Projects per year
Abstract
Understanding the air stability of MnBi2Te4 thin films is crucial for the development and long-term operation of electronic devices based on magnetic topological insulators. In the present work, we study MnBi2Te4 thin films upon exposure to the atmosphere using a combination of synchrotron-based photoelectron spectroscopy, room-temperature electrical transport, and atomic force microscopy to determine the oxidation process. After 2 days of air exposure, a 2 nm thick oxide passivates the surface, corresponding to the oxidation of only the top two surface layers, with the underlying layers preserved. This protective oxide layer results in samples that still exhibit metallic conduction even after several days of air exposure. Furthermore, the work function decreases from 4.4 eV for pristine MnBi2Te4 to 4.0 eV after the formation of the oxide, along with only a small shift in the core levels, indicating minimal doping as a result of air exposure. With the oxide confined to the top surface layers, and the underlying layers preserved, it may be possible to explore new avenues in how to handle, prepare, and passivate future MnBi2Te4 devices.
Original language | English |
---|---|
Pages (from-to) | 6102-6108 |
Number of pages | 7 |
Journal | ACS Applied Materials & Interfaces |
Volume | 14 |
Issue number | 4 |
DOIs | |
Publication status | Published - 20 Jan 2022 |
Keywords
- air stability
- capping layer
- magnetic topological insulator
- MnBiTe
- thin film
-
ARC Centre of Excellence in Future Low-energy Electronics Technologies
Fuhrer, M., Bao, Q., Culcer, D., Davis, M., Davis, J. A., Hamilton, A., Helmerson, K., Kalantar-Zadeh, K., Klochan, O., Medhekar, N., Ostrovskaya, E., Parish, M., Schiffrin, A., Seidel, J., Sushkov, O., Valanoor, N., Vale, C., Wang, X., Wang, L., Galitskiy, V., Gurarie, V., Hannon, J., Höfling, S., Hone, J., Rule, K. C., Krausz, F., Littlewood, P., MacDonald, A., Neto, A., Oezyilmaz, B., Paglione, J., Phillips, W., Refael, G., Spielman, I., Tadich, A., Xue, Q., Cole, J., Perali, A., Neilson, D., Lin, H., Sek, G., Gaston, N., Hodgkiss, J. M., Tang, M., Karel, J., Nguyen, T., Adam, S. & Granville, S.
Australian Research Council (ARC), Monash University – Internal School Contribution, Monash University – Internal Department Contribution, Monash University – Internal Faculty Contribution, Monash University – Internal University Contribution, University of Wollongong, University of Queensland , Tsinghua University, University of New South Wales, Australian National University , RMIT University, Swinburne University of Technology
29/06/17 → 28/06/24
Project: Research
-
Realisation of novel electronic phases in two-dimensional materials
Australian Research Council (ARC)
17/06/16 → 31/12/19
Project: Research
Equipment
-
Australian Synchrotron
Office of the Vice-Provost (Research and Research Infrastructure)Facility/equipment: Facility