Abstract
Modelling patient flow is crucial in understanding resource demand and prioritization. To date, there has been limited work in predicting ward-level discharges. Our study investigates forecasting total next-day discharges from an open ward. In the absence of real-time clinical data, we propose to construct a feature set from patient demographics, ward data and discharge time series to derive a random forest model for forecasting daily discharge. Using data from a general ward of a large regional Australian hospital, we compared our random forest model with a classical auto-regressive integrated moving average (ARIMA) for 12,141 patient visits over 1826 days. Forecasting quality was measured using Mean Forecast Error, Mean Absolute Error, symmetric Mean Absolute Percentage Error and Root Mean Square Error. When compared to the baseline model, next day discharge forecasts using random forests achieved 17.4 % improvement in Mean Absolute Error, for all days in the year 2014.
Original language | English |
---|---|
Title of host publication | Proceedings - 2016 IEEE International Conference on Healthcare Informatics, ICHI |
Subtitle of host publication | 4–7 October 2016 Chicago, Illinois |
Editors | Kai Zheng, Gregor Stiglic, Ann Blandford |
Place of Publication | Piscataway NJ USA |
Publisher | IEEE, Institute of Electrical and Electronics Engineers |
Pages | 177-183 |
Number of pages | 7 |
ISBN (Electronic) | 9781509061174 |
ISBN (Print) | 9781509061181 |
DOIs | |
Publication status | Published - 2016 |
Externally published | Yes |
Event | IEEE International Conference on Healthcare Informatics 2016 - Chicago, United States of America Duration: 4 Oct 2016 → 7 Oct 2016 https://web.archive.org/web/20161017125520/http://ieee-ichi.org/ https://ieeexplore.ieee.org/xpl/conhome/7774974/proceeding (Proceedings) |
Conference
Conference | IEEE International Conference on Healthcare Informatics 2016 |
---|---|
Abbreviated title | ICHI 2016 |
Country/Territory | United States of America |
City | Chicago |
Period | 4/10/16 → 7/10/16 |
Internet address |