TY - JOUR
T1 - Fluctuating temperature modifies heat-mortality association around the globe
AU - Wu, Yao
AU - Wen, Bo
AU - Li, Shanshan
AU - Gasparrini, Antonio
AU - Tong, Shilu
AU - Overcenco, Ala
AU - Urban, Aleš
AU - Schneider, Alexandra
AU - Entezari, Alireza
AU - Vicedo-Cabrera, Ana Maria
AU - Zanobetti, Antonella
AU - Analitis, Antonis
AU - Zeka, Ariana
AU - Tobias, Aurelio
AU - Alahmad, Barrak
AU - Armstrong, Ben
AU - Forsberg, Bertil
AU - Íñiguez, Carmen
AU - Ameling, Caroline
AU - De la Cruz Valencia, César
AU - Åström, Christofer
AU - Houthuijs, Danny
AU - Van Dung, Do
AU - Royé, Dominic
AU - Indermitte, Ene
AU - Lavigne, Eric
AU - Mayvaneh, Fatemeh
AU - Acquaotta, Fiorella
AU - de'Donato, Francesca
AU - Sera, Francesco
AU - Carrasco-Escobar, Gabriel
AU - Kan, Haidong
AU - Orru, Hans
AU - Kim, Ho
AU - Holobaca, Iulian Horia
AU - Kyselý, Jan
AU - Madureira, Joana
AU - Schwartz, Joel
AU - Katsouyanni, Klea
AU - Hurtado-Diaz, Magali
AU - Ragettli, Martina S.
AU - Hashizume, Masahiro
AU - Pascal, Mathilde
AU - de Sousa Zanotti Stagliorio Coélho, Micheline
AU - Scovronick, Noah
AU - Michelozzi, Paola
AU - Goodman, Patrick
AU - Nascimento Saldiva, Paulo Hilario
AU - Abrutzky, Rosana
AU - Osorio, Samuel
AU - Dang, Tran Ngoc
AU - Colistro, Valentina
AU - Huber, Veronika
AU - Lee, Whanhee
AU - Seposo, Xerxes
AU - Honda, Yasushi
AU - Bell, Michelle L.
AU - Guo, Yuming
N1 - Funding Information:
This study was supported by the Australian Research Council (DP210102076) and the Australian National Health and Medical Research Council (APP2000581). Y.W and B.W. were supported by the China Scholarship Council (nos. 202006010044 and 202006010043); S.L. was supported by an Emerging Leader Fellowship of the Australian National Health and Medical Research Council (no. APP2009866); Y.G. was supported by Career Development Fellowship (no. APP1163693) and Leader Fellowship (no. APP2008813) of the Australian National Health and Medical Research Council; J.K. and A.U. were supported by the Czech Science Foundation (project no. 20?28560S); N.S. was supported by the National Institute of Environmental Health Sciences-funded HERCULES Center (no. P30ES019776); Y.H. was supported by the Environment Research and Technology Development Fund (JPMEERF15S11412) of the Environmental Restoration and Conservation Agency; M.d.S.Z.S.C. and P.H.N.S. were supported by the S?o Paulo Research Foundation (FAPESP); H.O. and E.I. were supported by the Estonian Ministry of Education and Research (IUT34?17); J.M. was supported by a fellowship of Funda??o para a Ci?ncia e a Tecnlogia (SFRH/BPD/115112/2016); A.G. and F.S. were supported by the Medical Research Council UK (grant ID MR/R013349/1), the Natural Environment Research Council UK (grant ID NE/R009384/1), and the EU's Horizon 2020 project, Exhaustion (grant ID 820655); A.S. and F.d.D. were supported by the EU's Horizon 2020 project, Exhaustion (grant ID 820655); V.H. was supported by the Spanish Ministry of Economy, Industry and Competitiveness (grant ID PCIN-2017?046); and A.T. by MCIN/AEI/10.13039/501100011033 (grant CEX2018-000794-S). Statistics South Africa kindly provided the mortality data, but had no other role in the study. Y.G. A.G. M.H. and B. Armstrong set up the collaborative network. Y.G. S.L. and Y.W. designed the study. Y.G. S.L. and A.G. developed the statistical methods. Y.W. B.W. S.L. and Y.G. took the lead in drafting the manuscript and interpreting the results. Y.W. B.W. Y.G. A.G. S.T. A.O. A.U. A.S. A.E. A.M.V.-C. A. Zanobetti, A.A. A. Zeka, A.T. B. Alahmad, B. Armstrong, B.F. C.?. C. Ameling, C.D.l.C.V. C. ?str?m, D.H. D.V.D. D.R. E.I. E.L. F.M. F.A. F.D. F.S. G.C.-E. H. Kan, H.O. H. Kim, I.-H.H. J.K. J.M. J.S. K.K. M.H.-D. M.S.R. M.H. M.P. M.d.S.Z.S.C. N.S. P.M. P.G. P.H.N.S. R.A. S.O. T.N.D. V.C. V.H. W.L. X.S. Y.H. M.L.B. and S.L. provided the data and contributed to the interpretation of the results and the submitted version of the manuscript. Y.G. S.L. and Y.W. accessed and verified the data. All of the authors had full access to all of the data in the study and had final responsibility for the decision to submit for publication. The authors declare no competing interests.
Funding Information:
This study was supported by the Australian Research Council ( DP210102076 ) and the Australian National Health and Medical Research Council ( APP2000581 ). Y.W and B.W. were supported by the China Scholarship Council (nos. 202006010044 and 202006010043 ); S.L. was supported by an Emerging Leader Fellowship of the Australian National Health and Medical Research Council (no. APP2009866 ); Y.G. was supported by Career Development Fellowship (no. APP1163693) and Leader Fellowship (no. APP2008813) of the Australian National Health and Medical Research Council ; J.K. and A.U. were supported by the Czech Science Foundation (project no. 20–28560S ); N.S. was supported by the National Institute of Environmental Health Sciences -funded HERCULES Center (no. P30ES019776 ); Y.H. was supported by the Environment Research and Technology Development Fund ( JPMEERF15S11412 ) of the Environmental Restoration and Conservation Agency; M.d.S.Z.S.C. and P.H.N.S. were supported by the São Paulo Research Foundation (FAPESP); H.O. and E.I. were supported by the Estonian Ministry of Education and Research ( IUT34–17 ); J.M. was supported by a fellowship of Fundação para a Ciência e a Tecnlogia ( SFRH/BPD/115112/2016 ); A.G. and F.S. were supported by the Medical Research Council UK (grant ID MR/R013349/1 ), the Natural Environment Research Council UK (grant ID NE/R009384/1 ), and the EU’s Horizon 2020 project, Exhaustion (grant ID 820655 ); A.S. and F.d.D. were supported by the EU’s Horizon 2020 project, Exhaustion (grant ID 820655 ); V.H. was supported by the Spanish Ministry of Economy, Industry and Competitiveness (grant ID PCIN-2017–046 ); and A.T. by MCIN/AEI/10.13039/501100011033 (grant CEX2018-000794-S). Statistics South Africa kindly provided the mortality data, but had no other role in the study.
Publisher Copyright:
© 2022 The Author(s)
PY - 2022/3/29
Y1 - 2022/3/29
N2 - Studies have investigated the effects of heat and temperature variability (TV) on mortality. However, few assessed whether TV modifies the heat-mortality association. Data on daily temperature and mortality in the warm season were collected from 717 locations across 36 countries. TV was calculated as the standard deviation of the average of the same and previous days’ minimum and maximum temperatures. We used location-specific quasi-Poisson regression models with an interaction term between the cross-basis term for mean temperature and quartiles of TV to obtain heat-mortality associations under each quartile of TV, and then pooled estimates at the country, regional, and global levels. Results show the increased risk in heat-related mortality with increments in TV, accounting for 0.70% (95% confidence interval [CI]: −0.33 to 1.69), 1.34% (95% CI: −0.14 to 2.73), 1.99% (95% CI: 0.29–3.57), and 2.73% (95% CI: 0.76–4.50) of total deaths for Q1–Q4 (first quartile–fourth quartile) of TV. The modification effects of TV varied geographically. Central Europe had the highest attributable fractions (AFs), corresponding to 7.68% (95% CI: 5.25–9.89) of total deaths for Q4 of TV, while the lowest AFs were observed in North America, with the values for Q4 of 1.74% (95% CI: −0.09 to 3.39). TV had a significant modification effect on the heat-mortality association, causing a higher heat-related mortality burden with increments of TV. Implementing targeted strategies against heat exposure and fluctuant temperatures simultaneously would benefit public health.
AB - Studies have investigated the effects of heat and temperature variability (TV) on mortality. However, few assessed whether TV modifies the heat-mortality association. Data on daily temperature and mortality in the warm season were collected from 717 locations across 36 countries. TV was calculated as the standard deviation of the average of the same and previous days’ minimum and maximum temperatures. We used location-specific quasi-Poisson regression models with an interaction term between the cross-basis term for mean temperature and quartiles of TV to obtain heat-mortality associations under each quartile of TV, and then pooled estimates at the country, regional, and global levels. Results show the increased risk in heat-related mortality with increments in TV, accounting for 0.70% (95% confidence interval [CI]: −0.33 to 1.69), 1.34% (95% CI: −0.14 to 2.73), 1.99% (95% CI: 0.29–3.57), and 2.73% (95% CI: 0.76–4.50) of total deaths for Q1–Q4 (first quartile–fourth quartile) of TV. The modification effects of TV varied geographically. Central Europe had the highest attributable fractions (AFs), corresponding to 7.68% (95% CI: 5.25–9.89) of total deaths for Q4 of TV, while the lowest AFs were observed in North America, with the values for Q4 of 1.74% (95% CI: −0.09 to 3.39). TV had a significant modification effect on the heat-mortality association, causing a higher heat-related mortality burden with increments of TV. Implementing targeted strategies against heat exposure and fluctuant temperatures simultaneously would benefit public health.
KW - heat
KW - modification effect
KW - mortality
KW - temperature variability
UR - http://www.scopus.com/inward/record.url?scp=85126703036&partnerID=8YFLogxK
U2 - 10.1016/j.xinn.2022.100225
DO - 10.1016/j.xinn.2022.100225
M3 - Article
C2 - 35340394
AN - SCOPUS:85126703036
SN - 2666-6758
VL - 3
JO - The Innovation
JF - The Innovation
IS - 2
M1 - 100225
ER -