Flood inundation mapping by combining GNSS-R signals with topographical information

S. L.Kesav Unnithan, Basudev Biswal, Christoph Rüdiger

Research output: Contribution to journalComment / DebateResearchpeer-review

13 Citations (Scopus)


The Cyclone Global Navigation Satellite System (CYGNSS) mission collects near-global hourly, pseudo-randomly distributed Global Navigation Satellite System - Reflectometry (GNSS-R) signals in the form of signal-to-noise ratio (SNR) point data, which is sensitive to the presence of surface water, due to their operating frequency at L-band. However, because of the pseudo-random nature of these points, it is not possible to obtain continuous flood inundation maps at adequately high resolution. By considering topological indicators, such as height above nearest drainage (HAND) and slope of nearest drainage (SND), which indicate the probability of a certain area being prone to flooding, we hypothesize that combining static topographic information with the dynamic GNSS-R signals can result in large-scale, high-resolution flood inundation maps. Flood mapping was performed and validated with flood extent derived using available Sentinel-1A synthetic aperture radar (SAR) data for flooding in Kerala during August 2018, and North India during August 2017. The results obtained after thresholding indicate that the model exhibits a flooding accuracy ranging from 60% to 80% for lower threshold values. We observed significant overestimation error in mapping inundation across the flooding period, resulting in an optimal critical success index of 0.22 for threshold values between 17-19.

Original languageEnglish
Article number3026
Number of pages15
JournalRemote Sensing
Issue number18
Publication statusPublished - 2 Sept 2020


  • Flood inundation mapping
  • HAND
  • Sentinel-1A SAR

Cite this