FLight: A lightweight federated learning framework in edge and fog computing

Wuji Zhu, Mohammad Goudarzi, Rajkumar Buyya

Research output: Contribution to journalArticleResearchpeer-review

1 Citation (Scopus)

Abstract

The number of Internet of Things (IoT) applications, especially latency-sensitive ones, have been significantly increased. So, cloud computing, as one of the main enablers of the IoT that offers centralized services, cannot solely satisfy the requirements of IoT applications. Edge/fog computing, as a distributed computing paradigm, processes, and stores IoT data at the edge of the network, offering low latency, reduced network traffic, and higher bandwidth. The edge/fog resources are often less powerful compared to cloud, and IoT data is dispersed among many geo-distributed servers. Hence, Federated Learning (FL), which is a machine learning approach that enables multiple distributed servers to collaborate on building models without exchanging the raw data, is well-suited to edge/fog computing environments, where data privacy is of paramount importance. Besides, to manage different FL tasks on edge/fog computing environments, a lightweight resource management framework is required to manage different incoming FL tasks while does not incur significant overhead on the system. Accordingly, in this article, we propose a lightweight FL framework, called FLight, to be deployed on a diverse range of devices, ranging from resource-limited edge/fog devices to powerful cloud servers. FLight is implemented based on the FogBus2 framework, which is a containerized distributed resource management framework. Moreover, FLight integrates both synchronous and asynchronous models of FL. Besides, we propose a lightweight heuristic-based worker selection algorithm to select a suitable set of available workers to participate in the training step to obtain higher training time efficiency. The obtained results demonstrate the efficiency of the FLight. The worker selection technique reduces the training time of reaching 80% accuracy by 34% compared to sequential training, while asynchronous one helps to improve synchronous FL training time by 64%.

Original languageEnglish
Pages (from-to)813-841
Number of pages29
JournalSoftware: Practice and Experience
Volume54
Issue number5
DOIs
Publication statusPublished - May 2024
Externally publishedYes

Keywords

  • edge/fog/cloud computing
  • federated learning
  • Internet of Things
  • resource management framework

Cite this