Finite volume methods for convection-diffusion equations with right-hand side in H-1

Jérôme Droniou, Thierry Galloüet

Research output: Contribution to journalArticleResearchpeer-review

13 Citations (Scopus)

Abstract

We prove the convergence of a finite volume method for a noncoereive linear elliptic problem, with right-hand side in the dual space of the natural energy space of the problem.

Original languageEnglish
Pages (from-to)705-724
Number of pages20
JournalMathematical Modelling and Numerical Analysis
Volume36
Issue number4
DOIs
Publication statusPublished - 1 Jul 2002
Externally publishedYes

Keywords

  • Convection-diffusion equations
  • Finite volumes
  • Non-regular data
  • Noncoercivity

Cite this

@article{363c9a7786a1452ab7e35471b2fe322a,
title = "Finite volume methods for convection-diffusion equations with right-hand side in H-1",
abstract = "We prove the convergence of a finite volume method for a noncoereive linear elliptic problem, with right-hand side in the dual space of the natural energy space of the problem.",
keywords = "Convection-diffusion equations, Finite volumes, Non-regular data, Noncoercivity",
author = "J{\'e}r{\^o}me Droniou and Thierry Gallo{\"u}et",
year = "2002",
month = "7",
day = "1",
doi = "10.1051/m2an:2002031",
language = "English",
volume = "36",
pages = "705--724",
journal = "Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique",
issn = "0764-583X",
publisher = "EDP Sciences",
number = "4",

}

Finite volume methods for convection-diffusion equations with right-hand side in H-1. / Droniou, Jérôme; Galloüet, Thierry.

In: Mathematical Modelling and Numerical Analysis, Vol. 36, No. 4, 01.07.2002, p. 705-724.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Finite volume methods for convection-diffusion equations with right-hand side in H-1

AU - Droniou, Jérôme

AU - Galloüet, Thierry

PY - 2002/7/1

Y1 - 2002/7/1

N2 - We prove the convergence of a finite volume method for a noncoereive linear elliptic problem, with right-hand side in the dual space of the natural energy space of the problem.

AB - We prove the convergence of a finite volume method for a noncoereive linear elliptic problem, with right-hand side in the dual space of the natural energy space of the problem.

KW - Convection-diffusion equations

KW - Finite volumes

KW - Non-regular data

KW - Noncoercivity

UR - http://www.scopus.com/inward/record.url?scp=0036659031&partnerID=8YFLogxK

U2 - 10.1051/m2an:2002031

DO - 10.1051/m2an:2002031

M3 - Article

VL - 36

SP - 705

EP - 724

JO - Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique

JF - Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique

SN - 0764-583X

IS - 4

ER -