Abstract
Original language | English |
---|---|
Pages (from-to) | 3463-3471 |
Number of pages | 9 |
Journal | Biomacromolecules |
Volume | 14 |
Issue number | 10 |
DOIs | |
Publication status | Published - 14 Oct 2013 |
Externally published | Yes |
Keywords
- Block copolymers
- Drug delivery
- Hydrogels
- Micelles
- Particle size analysis
- Chemical compositions
- Copolymer compositions
- Hydrophilic monomers
- Lower critical solution temperature
- Reversible addition-fragmentation chain transfer polymerization
- Solution temperature
- Thermoresponsive polymer
- Wide-ranging applications
- Nanoparticles
- acrylic acid
- copolymer
- monomer
- nanoparticle
- water
- micelle
- polymer
- article
- catalysis
- chemical composition
- controlled study
- degradation
- hydrolysis
- molecular weight
- particle size
- pH
- polymerization
- priority journal
- temperature
- water content
- chemical phenomena
- chemical structure
- chemistry
- surface property
- time
- Hydrophobic and Hydrophilic Interactions
- Models, Molecular
- Molecular Structure
- Particle Size
- Polymers
- Surface Properties
- Temperature
- Time Factors
Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Biomacromolecules, Vol. 14, No. 10, 14.10.2013, p. 3463-3471.
Research output: Contribution to journal › Article › Research › peer-review
TY - JOUR
T1 - Fine tuning the disassembly time of thermoresponsive polymer nanoparticles
AU - Tran, Nguyen T D
AU - Jia, Zhongfan
AU - Truong Phuoc, Nghia
AU - Cooper, Matthew A
AU - Monteiro, Michael J
N1 - Cited By :12 Export Date: 25 July 2016 CODEN: BOMAF Correspondence Address: Monteiro, M.J.; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane QLD 4072, Australia; email: m.monteiro@uq.edu.au Chemicals/CAS: acrylic acid, 10344-93-1, 79-10-7; water, 7732-18-5; Micelles; Polymers References: Brun-Graeppi, A.K., Richard, C., Bessodes, M., Scherman, D., Merten, O.W., (2011) J. Controlled Release, 149, pp. 209-224; Shchukin, D.G., Grigoriev, D.O., Mohwald, H., (2010) Soft Matter, 6, pp. 720-725; Soliman, M., Allen, S., Davies, M.C., Alexander, C., (2010) Chem. Commun., 46, pp. 5421-5433; Truong, N.P., Gu, W., Prasadam, I., Jia, Z., Crawford, R., Xiao, Y., Monteiro, M.J., (2013) Nat. Commun., 4 (1902), pp. 1-7; Zayas, H.A., Truong, N.P., Valade, D., Jia, Z.F., Monteiro, M.J., (2013) Polym. Chem., 4, pp. 592-599; Urbani, C.N., Monteiro, M.J., (2009) Macromolecules, 42, pp. 3884-3886; Chang, C.W., Bays, E., Tao, L., Alconcel, S.N.S., Maynard, H.D., (2009) Chem. Commun., pp. 3580-4358; Gu, W., Jia, Z., Truong, N.P., Prasadam, I., Xiao, Y., Monteiro, M.J., (2013) Biomacromolecules, , 10.1021/bm401139e; Mackinnon, N., Guerin, G., Liu, B.X., Gradinaru, C.C., Rubinstein, J.L., Macdonald, P.M., (2010) Langmuir, 26, pp. 1081-1089; Chan, Y., Wong, T., Byrne, F., Kavallaris, M., Bulmus, V., (2008) Biomacromolecules, 9, pp. 1826-1836; Zhang, L., Bernard, J., Davis, T.P., Barner-Kowollik, C., Stenzel, M.H., (2008) Macromol. Rapid Commun., 29, pp. 123-129; Jia, Z.F., Wong, L.J., Davis, T.P., Bulmus, V., (2008) Biomacromolecules, 9, pp. 3106-3113; Xu, X.W., Smith, A.E., Kirkland, S.E., McCormick, C.L., (2008) Macromolecules, 41, pp. 8429-8435; Convertine, A.J., Benoit, D.S.W., Duvall, C.L., Hoffman, A.S., Stayton, P.S., (2009) J. Controlled Release, 133, pp. 221-229; Kellum, M.G., Smith, A.E., York, S.K., McCormick, C.L., (2010) Macromolecules, 43, pp. 7033-7040; Lee, Y., Ishii, T., Cabral, H., Kim, H.J., Seo, J.-H., Nishiyama, N., Oshima, H., Kataoka, K., (2009) Angew. Chem., Int. Ed., 48, pp. 5309-5312; Smith, A.E., Xu, X., Kirkland-York, S.E., Savin, D.A., McCormick, C.L., (2010) Macromolecules, 43, pp. 1210-1217; Smith, A.E., Xu, X., Savin, D.A., McCormick, C.L., (2010) Polym. Chem., 1, pp. 628-630; Soga, O., Van Nostrum, C.F., Hennink, W.E., (2004) Biomacromolecules, 5, pp. 818-821; Pastine, S.J., Okawa, D., Zettl, A., Frechet, J.M.J., (2009) J. Am. Chem. Soc., 131, pp. 13586-13587; Li, Y.H., Tang, Y.F., Yang, K., Chen, X.P., Lu, L.C., Cai, Y.L., (2008) Macromolecules, 41, pp. 4597-4606; Bohlender, C., Wolfram, M., Goerls, H., Imhof, W., Menzel, R., Baumgaertel, A., Schubert, U.S., Schiller, A., (2012) J. Mater. Chem., 22, pp. 8785-8792; Karaki, F., Kabasawa, Y., Yanagimoto, T., Umeda, N., Firman, Urano, Y., Nagano, T., Ohwada, T., (2012) Chem. - Eur. J., 18, pp. 1127-1141; Johnston, A.P.R., Lee, L., Wang, Y.J., Caruso, F., (2009) Small, 5, pp. 1418-1421; Cavalieri, F., Postma, A., Lee, L., Caruso, F., (2009) ACS Nano, 3, pp. 234-240; Glangchai, L.C., Caldorera-Moore, M., Shi, L., Roy, K., (2008) J. Controlled Release, 125, pp. 263-272; Lu, Z.H., Prouty, M.D., Guo, Z.H., Golub, V.O., Kumar, C.S.S.R., Lvov, Y.M., (2005) Langmuir, 21, pp. 2042-2050; Hu, S.H., Tsai, C.H., Liao, C.F., Liu, D.M., Chen, S.Y., (2008) Langmuir, 24, pp. 11811-11818; Caruso, M.M., Schelkopf, S.R., Jackson, A.C., Landry, A.M., Braun, P.V., Moore, J.S., (2009) J. Mater. Chem., 19, pp. 6093-6096; Neradovic, D., Hinrichs, W.L.J., Kettenes-Van Den Bosch, J.J., Hennink, W.E., (1999) Macromol. Rapid Commun., 20, pp. 577-581; Neradovic, D., Van Nostrum, C.F., Hennink, W.E., (2001) Macromolecules, 34, pp. 7589-7591; Shi, Y., Van Den Dungen, E.T.A., Klumperman, B., Van Nostrum, C.F., Hennink, W.E., (2013) ACS Macro Lett., 2, pp. 404-408; De Jong, S.J., Arias, E.R., Rijkers, D.T.S., Van Nostrum, C.F., Kettenes-Van Den Bosch, J.J., Hennink, W.E., (2001) Polymer, 42, pp. 2795-2802; Truong, N.P., Jia, Z.F., Burges, M., McMillan, N.A.J., Monteiro, M.J., (2011) Biomacromolecules, 12, pp. 1876-1882; Truong, N.P., Jia, Z.F., Burgess, M., Payne, L., McMillan, N.A.J., Monteiro, M.J., (2011) Biomacromolecules, 12, pp. 3540-3548; Tran, N.T.D., Truong, N.P., Gu, W.Y., Jia, Z.F., Cooper, M.A., Monteiro, M.J., (2013) Biomacromolecules, 14, pp. 495-502; Monteiro, M.J., (2005) J. Polym. Sci., Part A: Polym. Chem., 43, pp. 5643-5651; Monteiro, M.J., (2005) J. Polym. Sci., Part A: Polym. Chem., 43, pp. 3189-3204; Moad, G., Rizzardo, E., Thang, S.H., (2012) Aust. J. Chem., 65, pp. 985-1076; York, A.W., Kirkland, S.E., McCormick, C.L., (2008) Adv. Drug Delivery Rev., 60, pp. 1018-1036; Klumperman, B., Van Den Dungen, E.T.A., Heuts, J.P.A., Monteiro, M.J., (2010) Macromol. Rapid Commun., 31, pp. 1846-1862; Boyer, C., Bulmus, V., Davis, T.P., Ladmiral, V., Liu, J.Q., Perrier, S., (2009) Chem. Rev., 109, pp. 5402-5436; Furyk, S., Zhang, Y.J., Ortiz-Acosta, D., Cremer, P.S., Bergbreiter, D.E., (2006) J. Polym. Sci., Part A: Polym. Chem., 44, pp. 1492-1501; Feil, H., Bae, Y.H., Feijen, J., Kim, S.W., (1993) Macromolecules, 26, pp. 2496-2500; Shibayama, M., Mizutani, S., Nomura, S., (1996) Macromolecules, 29, pp. 2019-2024; Wong, C., Stylianopoulos, T., Cui, J., Martin, J., Chauhan, V.P., Jiang, W., Popovic, Z., Fukumura, D., (2011) Proc. Natl. Acad. Sci. U.S.A., 108, pp. 2426-2431; Popovic, Z., Liu, W.H., Chauhan, V.P., Lee, J., Wong, C., Greytak, A.B., Insin, N., Bawendi, M.G., (2010) Angew. Chem., Int. Ed., 49, pp. 8649-8652; Cho, E.C., Lee, J., Cho, K., (2003) Macromolecules, 36, pp. 9929-9934; Chu, B., Wu, C., (1996) Macromol. Symp., 106, pp. 421-423; Heskins, M., Guillet, J.E., (1968) J. Macromol. Sci., Part A: Pure Appl. Chem., 2, pp. 1441-1455; Pelton, R., (2010) J. Colloid Interface Sci., 348, pp. 673-674; Perrault, S.D., Walkey, C., Jennings, T., Fischer, H.C., Chan, W.C.W., (2009) Nano Lett., 9, pp. 1909-1915; Griffiths, J.R., (1991) Br. J. Cancer, 64, pp. 425-427; Wojtkowiak, J.W., Verduzco, D., Schramm, K.J., Gillies, R.J., (2011) Mol. Pharmaceutics, 8, pp. 2032-2038
PY - 2013/10/14
Y1 - 2013/10/14
N2 - Timed-released disassembly of nanoparticles without a remote trigger or environmental cues is demonstrated in this work. The reversible addition-fragmentation chain transfer (RAFT) polymerization allowed the fine-tuning of the chemical composition in the diblock copolymers, in which the first block consisted of a hydrophilic monomer (DMA) and the second random block consisted of three different monomers: (a) the thermoresponsive NIPAM, (b) the self-catalyzed hydrolyzable DMAEA, and (c) the hydrophobic BA. These diblock copolymers were solubilized in water below the lower critical solution temperature (LCST) of the thermoresponsive second block, and heated to 37 C (i.e., >LCST) to form small micelle nanoparticles with a narrow particle size distribution. As DMAEA hydrolyzed to acrylic acid groups, the LCST of the diblock increased, and the time at the start of micelle disassembly (t start) corresponded to the point where the LCST was equal to the solution temperature (i.e., 37 C). The high water content in the PNIPAM core allowed an even degradation of the core over time. The copolymer composition allowed fine control over tstart, as this time was linearly dependent upon the BA units in the second block. These nanoparticles could also be designed to be stable (i.e., not disassemble) over a wide pH range or disassemble below a pH of 7.3. Additionally, the time from the start of disassembly to full unimer formation (tdegrade) could be controlled by the amount of DMAEA units in the second block. A longer tdegrade (∼5.5 h) was found when the number of DMAEA units was 42 compared to t degrade of 1.1 h for 25 units. The nanoparticles designed in this work, through fine control of the polymer chemical composition, have the potential for drug delivery purposes for timed-release of drugs and prodrugs and other wide-ranging applications where timed-release would be beneficial.
AB - Timed-released disassembly of nanoparticles without a remote trigger or environmental cues is demonstrated in this work. The reversible addition-fragmentation chain transfer (RAFT) polymerization allowed the fine-tuning of the chemical composition in the diblock copolymers, in which the first block consisted of a hydrophilic monomer (DMA) and the second random block consisted of three different monomers: (a) the thermoresponsive NIPAM, (b) the self-catalyzed hydrolyzable DMAEA, and (c) the hydrophobic BA. These diblock copolymers were solubilized in water below the lower critical solution temperature (LCST) of the thermoresponsive second block, and heated to 37 C (i.e., >LCST) to form small micelle nanoparticles with a narrow particle size distribution. As DMAEA hydrolyzed to acrylic acid groups, the LCST of the diblock increased, and the time at the start of micelle disassembly (t start) corresponded to the point where the LCST was equal to the solution temperature (i.e., 37 C). The high water content in the PNIPAM core allowed an even degradation of the core over time. The copolymer composition allowed fine control over tstart, as this time was linearly dependent upon the BA units in the second block. These nanoparticles could also be designed to be stable (i.e., not disassemble) over a wide pH range or disassemble below a pH of 7.3. Additionally, the time from the start of disassembly to full unimer formation (tdegrade) could be controlled by the amount of DMAEA units in the second block. A longer tdegrade (∼5.5 h) was found when the number of DMAEA units was 42 compared to t degrade of 1.1 h for 25 units. The nanoparticles designed in this work, through fine control of the polymer chemical composition, have the potential for drug delivery purposes for timed-release of drugs and prodrugs and other wide-ranging applications where timed-release would be beneficial.
KW - Block copolymers
KW - Drug delivery
KW - Hydrogels
KW - Micelles
KW - Particle size analysis
KW - Chemical compositions
KW - Copolymer compositions
KW - Hydrophilic monomers
KW - Lower critical solution temperature
KW - Reversible addition-fragmentation chain transfer polymerization
KW - Solution temperature
KW - Thermoresponsive polymer
KW - Wide-ranging applications
KW - Nanoparticles
KW - acrylic acid
KW - copolymer
KW - monomer
KW - nanoparticle
KW - water
KW - micelle
KW - polymer
KW - article
KW - catalysis
KW - chemical composition
KW - controlled study
KW - degradation
KW - hydrolysis
KW - molecular weight
KW - particle size
KW - pH
KW - polymerization
KW - priority journal
KW - temperature
KW - water content
KW - chemical phenomena
KW - chemical structure
KW - chemistry
KW - surface property
KW - time
KW - Hydrophobic and Hydrophilic Interactions
KW - Models, Molecular
KW - Molecular Structure
KW - Particle Size
KW - Polymers
KW - Surface Properties
KW - Temperature
KW - Time Factors
UR - http://www.scopus.com/inward/record.url?scp=84885590084&partnerID=8YFLogxK
U2 - 10.1021/bm4007858
DO - 10.1021/bm4007858
M3 - Article
C2 - 24032408
AN - SCOPUS:84885590084
SN - 1525-7797
VL - 14
SP - 3463
EP - 3471
JO - Biomacromolecules
JF - Biomacromolecules
IS - 10
ER -