Projects per year
Abstract
The canonical Wnt/β-catenin pathway is crucial for early embryonic patterning, tissue homeostasis, and regeneration. While canonical Wnt/β-catenin stimulation has been used extensively to modulate pluripotency and differentiation of pluripotent stem cells (PSCs), the mechanism of these two seemingly opposing roles has not been fully characterized and is currently largely attributed to activation of nuclear Wnt target genes. Here, we show that low levels of Wnt stimulation via ectopic expression of Wnt1 or administration of glycogen synthase kinase-3 inhibitor CHIR99021 significantly increases PSC differentiation into neurons, cardiomyocytes and early endodermal intermediates. Our data indicate that enhanced differentiation outcomes are not mediated through activation of traditional Wnt target genes but by β-catenin's secondary role as a binding partner of membrane bound cadherins ultimately leading to the activation of developmental genes. In summary, fine-tuning of Wnt signaling to subthreshold levels for detectable nuclear β-catenin function appears to act as a switch to enhance differentiation of PSCs into multiple lineages. Our observations highlight a mechanism by which Wnt/β-catenin signaling can achieve dosage dependent dual roles in regulating self-renewal and differentiation. Stem Cells 2018;36:822–833.
Original language | English |
---|---|
Pages (from-to) | 822-833 |
Number of pages | 12 |
Journal | Stem Cells |
Volume | 36 |
Issue number | 6 |
DOIs | |
Publication status | Published - 1 Jun 2018 |
Keywords
- Cardiac
- Cell signaling
- Differentiation
- Neural differentiation
- Pluripotent stem cells
Projects
- 1 Finished
-
What makes a cell pluripotent?
National Health and Medical Research Council (NHMRC) (Australia)
1/01/15 → 31/12/18
Project: Research
Equipment
-
FlowCore
Andrew Fryga (Manager)
Faculty of Medicine Nursing and Health Sciences Research PlatformsFacility/equipment: Facility
-
MHTP Medical Genomics Facility
Trevor Wilson (Manager)
Hudson Institute - Department of Molecular and Translational ScienceFacility/equipment: Facility