Fiber element modeling of circular double-skin concrete-filled stainless-carbon steel tubular columns under axial load and bending

Mizan Ahmed, Qing Quan Liang, Ahmed Hamoda

Research output: Contribution to journalArticleResearchpeer-review

9 Citations (Scopus)

Abstract

Circular concrete-filled double-skin steel tubular (CFDST) columns with external stainless-steel are high-performance composite columns that have potential applications in civil construction including the construction of offshore structures, bridge piers, and transmission towers. Reflecting the limited research performed on investigating their mechanical performance, this study develops a computationally efficient fiber model to simulate the responses of short and slender beam-columns accounting for the influences of material and geometric nonlinearities. Accurate material laws of stainless steel, carbon steel, and confined concrete are implemented in the mathematical modeling scheme developed. A new solution algorithm based on the Regula-Falsi method is developed to maintain the equilibrium condition. The independent test results of short and slender CFDST beam-column are utilized to validate the accuracy of the theoretical solutions. The influences of various column parameters are studied on the load-axial strain (Formula presented.) curves, load-lateral deflection (Formula presented.) curves, column strength curves, and interaction curves of CFDST columns. Design formulas are suggested for designing short and beam-columns and validated against the numerical results. The computational model is found to be capable of simulating the responses of CFDST short and slender columns reasonably well. Parametric studies show that the consideration of the concrete confinement is important for the accuracy of the prediction of their mechanical responses. Furthermore, high-strength concrete can be utilized to enhance their load-carrying capacity particularly for short and intermediate slender beam-columns. The strengths of CFDST columns computed by the suggested design model are in good agreement with the test and numerical results.

Original languageEnglish
Pages (from-to)1114-1135
Number of pages22
JournalAdvances in Structural Engineering
Volume25
Issue number5
DOIs
Publication statusPublished - 10 Jan 2022

Keywords

  • circular concrete-filled double-skin steel tubular columns
  • composite columns
  • computational analysis
  • design models
  • short and slender columns

Cite this