Abstract
The locality preserving projections (LPP) algorithm is a recently developed linear dimensionality reduction algorithm that has been frequently used in face recognition and other applications. However, the projection matrix in LPP is not orthogonal, thus creating difficulties for both reconstruction and other applications. As the orthogonality property is desirable, orthogonal LPP (OLPP) has been proposed so that an orthogonal projection matrix can be obtained based on a step by step procedure; however, this makes the algorithm computationally more expensive. Therefore, in this paper, we propose a fast and orthogonal version of LPP, called FOLPP, which simultaneously minimizes the locality and maximizes the globality under the orthogonal constraint. As a result, the computation burden of the proposed algorithm can be effectively alleviated compared with the OLPP algorithm. Experimental results on two face recognition data sets and two hyperspectral data sets are presented to demonstrate the effectiveness of the proposed algorithm.
Original language | English |
---|---|
Article number | 7976386 |
Pages (from-to) | 5019-5030 |
Number of pages | 12 |
Journal | IEEE Transactions on Image Processing |
Volume | 26 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 2017 |
Externally published | Yes |
Keywords
- Dimensionality reduction (DR)
- face recognition
- hyperspectral image (HSI) classification
- locality preserving projections (LPP)