TY - JOUR
T1 - Facile synthesis of uniform virus-like mesoporous silica nanoparticles for enhanced cellular internalization
AU - Wang, Wenxing
AU - Wang, Peiyuan
AU - Tang, Xueting
AU - Elzatahry, Ahmed A.
AU - Wang, Shuwen
AU - Al-Dahyan, Daifallah
AU - Zhao, Mengyao
AU - Yao, Chi
AU - Hung, Chin Te
AU - Zhu, Xiaohang
AU - Zhao, Tiancong
AU - Li, Xiaomin
AU - Zhang, Fan
AU - Zhao, Dongyuan
PY - 2017/8/23
Y1 - 2017/8/23
N2 - The low-efficiency cellular uptake property of current nanoparticles greatly restricts their application in the biomedical field. Herein, we demonstrate that novel virus-like mesoporous silica nanoparticles can easily be synthesized, showing greatly superior cellular uptake property. The unique virus-like mesoporous silica nanoparticles with a spiky tubular rough surface have been successfully synthesized via a novel single-micelle epitaxial growth approach in a low-concentration-surfactant oil/water biphase system. The virus-like nanoparticles' rough surface morphology results mainly from the mesoporous silica nanotubes spontaneously grown via an epitaxial growth process. The obtained nanoparticles show uniform particle size and excellent monodispersity. The structural parameters of the nanoparticles can be well tuned with controllable core diameter (60-160 nm), tubular length (6-70 nm), and outer diameter (6-10 nm). Thanks to the biomimetic morphology, the virus-like nanoparticles show greatly superior cellular uptake property (invading living cells in large quantities within few minutes, <5 min), unique internalization pathways, and extended blood circulation duration (t1/2 = 2.16 h), which is much longer than that of conventional mesoporous silica nanoparticles (0.45 h). Furthermore, our epitaxial growth strategy can be applied to fabricate various virus-like mesoporous core-shell structures, paving the way toward designed synthesis of virus-like nanocomposites for biomedicine applications.
AB - The low-efficiency cellular uptake property of current nanoparticles greatly restricts their application in the biomedical field. Herein, we demonstrate that novel virus-like mesoporous silica nanoparticles can easily be synthesized, showing greatly superior cellular uptake property. The unique virus-like mesoporous silica nanoparticles with a spiky tubular rough surface have been successfully synthesized via a novel single-micelle epitaxial growth approach in a low-concentration-surfactant oil/water biphase system. The virus-like nanoparticles' rough surface morphology results mainly from the mesoporous silica nanotubes spontaneously grown via an epitaxial growth process. The obtained nanoparticles show uniform particle size and excellent monodispersity. The structural parameters of the nanoparticles can be well tuned with controllable core diameter (60-160 nm), tubular length (6-70 nm), and outer diameter (6-10 nm). Thanks to the biomimetic morphology, the virus-like nanoparticles show greatly superior cellular uptake property (invading living cells in large quantities within few minutes, <5 min), unique internalization pathways, and extended blood circulation duration (t1/2 = 2.16 h), which is much longer than that of conventional mesoporous silica nanoparticles (0.45 h). Furthermore, our epitaxial growth strategy can be applied to fabricate various virus-like mesoporous core-shell structures, paving the way toward designed synthesis of virus-like nanocomposites for biomedicine applications.
UR - http://www.scopus.com/inward/record.url?scp=85028055482&partnerID=8YFLogxK
U2 - 10.1021/acscentsci.7b00257
DO - 10.1021/acscentsci.7b00257
M3 - Article
C2 - 28852697
AN - SCOPUS:85028055482
SN - 2374-7943
VL - 3
SP - 839
EP - 846
JO - ACS Central Science
JF - ACS Central Science
IS - 8
ER -