Facile synthesis of uniform virus-like mesoporous silica nanoparticles for enhanced cellular internalization

Wenxing Wang, Peiyuan Wang, Xueting Tang, Ahmed A. Elzatahry, Shuwen Wang, Daifallah Al-Dahyan, Mengyao Zhao, Chi Yao, Chin Te Hung, Xiaohang Zhu, Tiancong Zhao, Xiaomin Li, Fan Zhang, Dongyuan Zhao

Research output: Contribution to journalArticleResearchpeer-review

226 Citations (Scopus)

Abstract

The low-efficiency cellular uptake property of current nanoparticles greatly restricts their application in the biomedical field. Herein, we demonstrate that novel virus-like mesoporous silica nanoparticles can easily be synthesized, showing greatly superior cellular uptake property. The unique virus-like mesoporous silica nanoparticles with a spiky tubular rough surface have been successfully synthesized via a novel single-micelle epitaxial growth approach in a low-concentration-surfactant oil/water biphase system. The virus-like nanoparticles' rough surface morphology results mainly from the mesoporous silica nanotubes spontaneously grown via an epitaxial growth process. The obtained nanoparticles show uniform particle size and excellent monodispersity. The structural parameters of the nanoparticles can be well tuned with controllable core diameter (60-160 nm), tubular length (6-70 nm), and outer diameter (6-10 nm). Thanks to the biomimetic morphology, the virus-like nanoparticles show greatly superior cellular uptake property (invading living cells in large quantities within few minutes, <5 min), unique internalization pathways, and extended blood circulation duration (t1/2 = 2.16 h), which is much longer than that of conventional mesoporous silica nanoparticles (0.45 h). Furthermore, our epitaxial growth strategy can be applied to fabricate various virus-like mesoporous core-shell structures, paving the way toward designed synthesis of virus-like nanocomposites for biomedicine applications.

Original languageEnglish
Pages (from-to)839-846
Number of pages8
JournalACS Central Science
Volume3
Issue number8
DOIs
Publication statusPublished - 23 Aug 2017
Externally publishedYes

Cite this