TY - JOUR
T1 - Facile production of nanoaggregates with tuneable morphologies from thermoresponsive P(DEGMA-co-HPMA)
AU - Truong Phuoc, Nghia
AU - Whittaker, M.R.
AU - Anastasaki, A.
AU - Haddleton, D.M.
AU - Quinn, J.F.
AU - Davis, T.P.
N1 - Cited By :3
Export Date: 25 July 2016
Correspondence Address: Quinn, J.F.; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University ParkvilleAustralia; email: [email protected]
References: Cheng, C.J., Tietjen, G.T., Saucier-Sawyer, J.K., Saltzman, W.M., (2015) Nat. Rev. Drug Discovery, 14, p. 239; Veiseh, O., Tang, B.C., Whitehead, K.A., Anderson, D.G., Langer, R., (2015) Nat. Rev. Drug Discovery, 14, p. 45; Brinkhuis, R.P., Rutjes, F.P.J.T., Van Hest, J.C.M., (2011) Polym. Chem., 2, p. 1449; Lasic, D.D., Papahadjopoulos, D., (1995) Science, 267, p. 1275; Lammers, T., Kiessling, F., Hennink, W.E., Storm, G., (2012) J. Controlled Release, 161, p. 175; Mitragotri, S., Anderson, D.G., Chen, X., Chow, E.K., Ho, D., Kabanov, A.V., Karp, J.M., Xu, C., (2015) ACS Nano, 9, p. 6644; Howes, P.D., Chandrawati, R., Stevens, M.M., (2014) Science, 346, p. 53; Truong, N.P., Gu, W.Y., Prasadam, I., Jia, Z.F., Crawford, R., Xiao, Y., Monteiro, M.J., (2013) Nat. Commun., p. 4; Schutz, C.A., Juillerat-Jeanneret, L., Mueller, H., Lynch, I., Riediker, M., Consortium, N., (2013) Nanomedicine, 8, p. 449; Lytton-Jean, A.K., Kauffman, K.J., Kaczmarek, J.C., Langer, R., (2015) Cancer Treat. Res., 166, p. 293; Etheridge, M.L., Campbell, S.A., Erdman, A.G., Haynes, C.L., Wolf, S.M., McCullough, J., (2013) Nanomed. Nanotechnol., 9, p. 1; Bae, Y.H., Park, K., (2011) J. Controlled Release, 153, p. 198; Park, K., (2013) ACS Nano, 7, p. 7442; Daum, N., Tscheka, C., Neumeyer, A., Schneider, M., (2012) Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 4, p. 52; Toy, R., Peiris, P.M., Ghaghada, K.B., Karathanasis, E., (2014) Nanomed., 9, p. 121; Truong, N.P., Quinn, J.F., Dussert, M.V., Sousa, N.B.T., Whittaker, M.R., Davis, T.P., (2015) ACS Macro Lett., 4, p. 381; Caldorera-Moore, M., Guimard, N., Shi, L., Roy, K., (2010) Expert Opin. Drug Delivery, 7, p. 479; Truong, N.P., Whittaker, M.R., Mak, C.W., Davis, T.P., (2015) Expert Opin. Drug Delivery, 12, p. 129; Geng, Y., Dalhaimer, P., Cai, S., Tsai, R., Tewari, M., Minko, T., Discher, D.E., (2007) Nat. Nanotechnol., 2, p. 249; Vivo, B., Huang, X., Li, L., Liu, T., Hao, N., Liu, H., Chen, D., Tang, F., (2011) ACS Nano, 5, p. 5390; Hu, X.L., Hu, J.M., Tian, J., Ge, Z.S., Zhang, G.Y., Luo, K.F., Liu, S.Y., (2013) J. Am. Chem. Soc., 135, p. 17617; Christian, D.A., Cai, S., Garbuzenko, O.B., Harada, T., Allison, L., Minko, T., Discher, D.E., (2009) Mol. Pharm., 6, p. 1343; Barua, S., Yoo, J.W., Kolhar, P., Wakankar, A., Gokarn, Y.R., Mitragotri, S., (2013) Proc. Natl. Acad. Sci. U. S. A., 110, p. 3270; Karagoz, B., Esser, L., Duong, H.T., Basuki, J.S., Boyer, C., Davis, T.P., (2014) Polym. Chem., 5, p. 350; Kolhar, P., Doshi, N., Mitragotri, S., (2011) Small, 7, p. 2094; Barua, S., Mitragotri, S., (2013) ACS Nano, 7, p. 9558; Zhang, K., Fang, H., Chen, Z., Taylor, J.-S.A., Wooley, K.L., (2008) Bioconjugate Chem., 19, p. 1880; Florez, L., Herrmann, C., Cramer, J.M., Hauser, C.P., Koynov, K., Landfester, K., Crespy, D., Mailander, V., (2012) Small, 8, p. 2222; Zhang, Y., Tekobo, S., Tu, Y., Zhou, Q.F., Jin, X.L., Dergunov, S.A., Pinkhassik, E., Yan, B., (2012) ACS Appl. Mater. Interfaces, 4, p. 4099; Paul, D., Achouri, S., Yoon, Y.Z., Herre, J., Bryant, C.E., Cicuta, P., (2013) Biophys. J., 105, p. 1143; Smith, A.E., Xu, X.W., McCormick, C.L., (2010) Prog. Polym. Sci., 35, p. 45; Roy, D., Brooks, W.L.A., Sumerlin, B.S., (2013) Chem. Soc. Rev., 42, p. 7214; Talelli, M., Hennink, W.E., (2011) Nanomedicine, 6, p. 1245; Convertine, A.J., Lokitz, B.S., Vasileva, Y., Myrick, L.J., Scales, C.W., Lowe, A.B., McCormick, C.L., (2006) Macromolecules, 39, p. 1724; McKee, J.R., Ladmiral, V., Niskanen, J., Tenhu, H., Armes, S.P., (2011) Macromolecules, 44, p. 7692; Sundararaman, A., Stephan, T., Grubbs, R.B., (2008) J. Am. Chem. Soc., 130, p. 12264; Moughton, A.O., Patterson, J.P., O'Reilly, R.K., (2011) Chem. Commun., 47, p. 355; Moughton, A.O., O'Reilly, R.K., (2010) Chem. Commun., 46, p. 1091; Cai, Y., Aubrecht, K.B., Grubbs, R.B., (2011) J. Am. Chem. Soc., 133, p. 1058; Ke, X.X., Wang, L., Xu, J.T., Du, B.Y., Tu, Y.F., Fan, Z.Q., (2014) Soft Matter, 10, p. 5201; Qian, J., Wu, F.P., (2008) Macromolecules, 41, p. 8921; Jia, Z.F., Bobrin, V.A., Truong, N.P., Gillard, M., Monteiro, M.J., (2014) J. Am. Chem. Soc., 136, p. 5824; Qiu, X.P., Tanaka, F., Winnik, F.M., (2007) Macromolecules, 40, p. 7069; Vihola, H., Laukkanen, A., Valtola, L., Tenhu, H., Hirvonen, J., (2005) Biomaterials, 26, p. 3055; Harsh, D.C., Gehrke, S.H., (1991) J. Controlled Release, 17, p. 175; Lavigueur, C., Garcia, J.G., Hendriks, L., Hoogenboom, R., Cornelissen, J.J.L.M., Nolte, R.J.M., (2011) Polym. Chem., 2, p. 333; Lynch, I., Salvati, A., Dawson, K.A., (2009) Nat. Nanotechnol., 4, p. 546; Congdon, T., Shaw, P., Gibson, M.I., (2015) Polym. Chem., 6, p. 4749; Chua, G.B.H., Roth, P.J., Duong, H.T.T., Davis, T.P., Lowe, A.B., (2012) Macromolecules, 45, p. 1362; Lutz, J.F., (2008) J. Polym. Sci., Part A: Polym. Chem., 46, p. 3459; Hu, Z.B., Cai, T., Chi, C.L., (2010) Soft Matter, 6, p. 2115; Vancoillie, G., Frank, D., Hoogenboom, R., (2014) Prog. Polym. Sci., 39, p. 1074; Lutz, J.F., Hoth, A., (2006) Macromolecules, 39, p. 893; Lutz, J.F., Akdemir, O., Hoth, A., (2006) J. Am. Chem. Soc., 128, p. 13046; Han, S., Hagiwara, M., Ishizone, T., (2003) Macromolecules, 36, p. 8312; Jonas, A.M., Glinel, K., Oren, R., Nysten, B., Huck, W.T.S., (2007) Macromolecules, 40, p. 4403; Luzon, M., Boyer, C., Peinado, C., Corrales, T., Whittaker, M., Tao, L., Davis, T.P., (2010) J. Polym. Sci., Part A: Polym. Chem., 48, p. 2783; Lutz, J.F., Weichenhan, K., Akdemir, O., Hoth, A., (2007) Macromolecules, 40, p. 2503; Shen, W.Q., Chang, Y.L., Liu, G.Y., Wang, H.F., Cao, A.N., An, Z.S., (2011) Macromolecules, 44, p. 2524; Khine, Y.Y., Jiang, Y., Dag, A., Lu, H., Stenzel, M.H., (2015) Macromol. Biosci., 15, p. 1091; Lutz, J.F., Andrieu, J., Uzgun, S., Rudolph, C., Agarwal, S., (2007) Macromolecules, 40, p. 8540; Zengin, A., Yildirim, E., Caykara, T., (2013) J. Polym. Sci., Part A: Polym. Chem., 51, p. 954; Wischerhoff, E., Uhlig, K., Lankenau, A., Borner, H.G., Laschewsky, A., Duschl, C., Lutz, J.F., (2008) Angew. Chem., Int. Ed., 47, p. 5666; Truong, N.P., Dussert, M.V., Whittaker, M.R., Quinn, J.F., Davis, T.P., (2015) Polym. Chem., 6, p. 3865; Plummer, R., Hill, D.J.T., Whittaker, A.K., (2006) Macromolecules, 39, p. 8379; Yu, B., Chan, J.W., Hoyle, C.E., Lowe, A.B., (2009) J. Polym. Sci., Part A: Polym. Chem., 47, p. 3544; Tran, N.T.D., Truong, N.P., Gu, W.Y., Jia, Z.F., Cooper, M.A., Monteiro, M.J., (2013) Biomacromolecules, 14, p. 495; Nuhn, L., Barz, M., Zentel, R., (2014) Macromol. Biosci., 14, p. 607; Tucker, B.S., Sumerlin, B.S., (2014) Polym. Chem., 5, p. 1566; Wutzel, H., Richter, F.H., Li, Y., Sheiko, S.S., Klok, H.A., (2014) Polym. Chem., 5, p. 1711; Chang, C.W., Bays, E., Tao, L., Alconcel, S.N.S., Maynard, H.D., (2009) Chem. Commun., p. 3580; Pissuwan, D., Boyer, C., Gunasekaran, K., Davis, T.P., Bulmus, V., (2010) Biomacromolecules, 11, p. 412; Shi, Y., Van Den Dungen, E.T.A., Klumperman, B., Van Nostrum, C.F., Hennink, W.E., (2013) ACS Macro Lett., 2, p. 403; Tasaki, K., (1996) J. Am. Chem. Soc., 118, p. 8459; Israelachvili, J., (1997) Proc. Natl. Acad. Sci. U. S. A., 94, p. 8378; Chee, C.K., Hunt, B.J., Rimmer, S., Rutkaite, R., Soutar, I., Swanson, L., (2009) Soft Matter, 5, p. 3701; De, P., Sumerlin, B.S., (2013) Macromol. Chem. Phys., 214, p. 272; Ward, M.A., Georgiou, T.K., (2011) Polymer, 3, p. 1215; Griffiths, P.C., Hirst, N., Paul, A., King, S.M., Heenan, R.K., Farley, R., (2004) Langmuir, 20, p. 6904; Walter, R., Ricka, J., Quellet, C., Nyffenegger, R., Binkert, T., (1996) Macromolecules, 29, p. 4019; Jia, Z.F., Truong, N.P., Monteiro, M.J., (2013) Polym. Chem., 4, p. 233; Cai, T., Marquez, M., Hu, Z.B., (2007) Langmuir, 23, p. 8663; Lynd, N.A., Meuler, A.J., Hillmyer, M.A., (2008) Prog. Polym. Sci., 33, p. 875; Pietsch, C., Mansfeld, U., Guerrero-Sanchez, C., Hoeppener, S., Vollrath, A., Wagner, M., Hoogenboom, R., Schubert, U.S., (2012) Macromolecules, 45, p. 9292; Barton, A.F.M., (1975) Chem. Rev., 75, p. 731; Mai, Y., Eisenberg, A., (2012) Chem. Soc. Rev., 41, p. 5969; Cameron, N.S., Corbierre, M.K., Eisenberg, A., (1999) Can. J. Chem., 77, p. 1311; Warren, N.J., Armes, S.P., (2014) J. Am. Chem. Soc., 136, p. 10174; Figg, C.A., Simula, A., Gebre, K.A., Tucker, B.S., Haddleton, D.M., Sumerlin, B.S., (2015) Chem. Sci., 6, p. 1230; Holder, S.J., Sommerdijk, N.A.J.M., (2011) Polym. Chem., 2, p. 1018; Rieger, J., (2015) Macromol. Rapid Commun., 36, p. 1458; Guerin, G., Wang, H., Manners, I., Winnik, M.A., (2008) J. Am. Chem. Soc., 130, p. 14763; Gan, Y.D., Dong, D.H., Hogenesch, T.E., (1995) Macromolecules, 28, p. 383; Blanazs, A., Verber, R., Mykhaylyk, O.O., Ryan, A.J., Heath, J.Z., Douglas, C.W.I., Armes, S.P., (2012) J. Am. Chem. Soc., 134, p. 9741
PY - 2016/1/14
Y1 - 2016/1/14
N2 - Thermoresponsive polymers are used to produce nanoparticles or nanoaggregates for a wide range of applications such as nanomedicine. However, low-toxicity, thermoresponsive polymers such as methacrylate polymers with short oligo(ethylene glycol) side chains are not readily applicable to the synthesis of nanoaggregates with both spherical and nonspherical morphologies. Here we report the synthesis of a low-toxicity, thermoresponsive copolymer, P(DEGMA-co-HPMA), and describe its application in the RAFT-mediated emulsion polymerization of styrene as a means to produce nanoparticles with tuneable morphology (sphere, cylinder, vesicle and lamella). These nanoaggregates offer considerable potential as a novel platform for the next generation of nanotherapeutics with improved efficacy.
AB - Thermoresponsive polymers are used to produce nanoparticles or nanoaggregates for a wide range of applications such as nanomedicine. However, low-toxicity, thermoresponsive polymers such as methacrylate polymers with short oligo(ethylene glycol) side chains are not readily applicable to the synthesis of nanoaggregates with both spherical and nonspherical morphologies. Here we report the synthesis of a low-toxicity, thermoresponsive copolymer, P(DEGMA-co-HPMA), and describe its application in the RAFT-mediated emulsion polymerization of styrene as a means to produce nanoparticles with tuneable morphology (sphere, cylinder, vesicle and lamella). These nanoaggregates offer considerable potential as a novel platform for the next generation of nanotherapeutics with improved efficacy.
KW - Emulsification
KW - Emulsion polymerization
KW - Ethylene
KW - Ethylene glycol
KW - Medical nanotechnology
KW - Nanoparticles
KW - Styrene
KW - Synthesis (chemical)
KW - Toxicity
KW - Facile production
KW - ITS applications
KW - Methacrylate polymers
KW - Nanoaggregates
KW - Oligo(ethylene glycol)
KW - Thermo-responsive
KW - Thermo-responsive copolymers
KW - Thermoresponsive polymer
KW - Morphology
UR - http://www.scopus.com/inward/record.url?scp=84952801874&partnerID=8YFLogxK
U2 - 10.1039/c5py01467k
DO - 10.1039/c5py01467k
M3 - Article
AN - SCOPUS:84952801874
SN - 1759-9954
VL - 7
SP - 430
EP - 440
JO - Polymer Chemistry
JF - Polymer Chemistry
IS - 2
ER -