Facile production of nanoaggregates with tuneable morphologies from thermoresponsive P(DEGMA-co-HPMA)

Nghia Truong Phuoc, M.R. Whittaker, A. Anastasaki, D.M. Haddleton, J.F. Quinn, T.P. Davis

Research output: Contribution to journalArticleResearchpeer-review

42 Citations (Scopus)

Abstract

Thermoresponsive polymers are used to produce nanoparticles or nanoaggregates for a wide range of applications such as nanomedicine. However, low-toxicity, thermoresponsive polymers such as methacrylate polymers with short oligo(ethylene glycol) side chains are not readily applicable to the synthesis of nanoaggregates with both spherical and nonspherical morphologies. Here we report the synthesis of a low-toxicity, thermoresponsive copolymer, P(DEGMA-co-HPMA), and describe its application in the RAFT-mediated emulsion polymerization of styrene as a means to produce nanoparticles with tuneable morphology (sphere, cylinder, vesicle and lamella). These nanoaggregates offer considerable potential as a novel platform for the next generation of nanotherapeutics with improved efficacy.

Original languageEnglish
Pages (from-to)430-440
Number of pages11
JournalPolymer Chemistry
Volume7
Issue number2
DOIs
Publication statusPublished - 14 Jan 2016

Keywords

  • Emulsification
  • Emulsion polymerization
  • Ethylene
  • Ethylene glycol
  • Medical nanotechnology
  • Nanoparticles
  • Styrene
  • Synthesis (chemical)
  • Toxicity
  • Facile production
  • ITS applications
  • Methacrylate polymers
  • Nanoaggregates
  • Oligo(ethylene glycol)
  • Thermo-responsive
  • Thermo-responsive copolymers
  • Thermoresponsive polymer
  • Morphology

Cite this

@article{5a74222306fc4f288d5cb272aa6abb32,
title = "Facile production of nanoaggregates with tuneable morphologies from thermoresponsive P(DEGMA-co-HPMA)",
abstract = "Thermoresponsive polymers are used to produce nanoparticles or nanoaggregates for a wide range of applications such as nanomedicine. However, low-toxicity, thermoresponsive polymers such as methacrylate polymers with short oligo(ethylene glycol) side chains are not readily applicable to the synthesis of nanoaggregates with both spherical and nonspherical morphologies. Here we report the synthesis of a low-toxicity, thermoresponsive copolymer, P(DEGMA-co-HPMA), and describe its application in the RAFT-mediated emulsion polymerization of styrene as a means to produce nanoparticles with tuneable morphology (sphere, cylinder, vesicle and lamella). These nanoaggregates offer considerable potential as a novel platform for the next generation of nanotherapeutics with improved efficacy.",
keywords = "Emulsification, Emulsion polymerization, Ethylene, Ethylene glycol, Medical nanotechnology, Nanoparticles, Styrene, Synthesis (chemical), Toxicity, Facile production, ITS applications, Methacrylate polymers, Nanoaggregates, Oligo(ethylene glycol), Thermo-responsive, Thermo-responsive copolymers, Thermoresponsive polymer, Morphology",
author = "{Truong Phuoc}, Nghia and M.R. Whittaker and A. Anastasaki and D.M. Haddleton and J.F. Quinn and T.P. Davis",
note = "Cited By :3 Export Date: 25 July 2016 Correspondence Address: Quinn, J.F.; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University ParkvilleAustralia; email: john.f.quinn@monash.edu References: Cheng, C.J., Tietjen, G.T., Saucier-Sawyer, J.K., Saltzman, W.M., (2015) Nat. Rev. Drug Discovery, 14, p. 239; Veiseh, O., Tang, B.C., Whitehead, K.A., Anderson, D.G., Langer, R., (2015) Nat. Rev. Drug Discovery, 14, p. 45; Brinkhuis, R.P., Rutjes, F.P.J.T., Van Hest, J.C.M., (2011) Polym. Chem., 2, p. 1449; Lasic, D.D., Papahadjopoulos, D., (1995) Science, 267, p. 1275; Lammers, T., Kiessling, F., Hennink, W.E., Storm, G., (2012) J. Controlled Release, 161, p. 175; Mitragotri, S., Anderson, D.G., Chen, X., Chow, E.K., Ho, D., Kabanov, A.V., Karp, J.M., Xu, C., (2015) ACS Nano, 9, p. 6644; Howes, P.D., Chandrawati, R., Stevens, M.M., (2014) Science, 346, p. 53; Truong, N.P., Gu, W.Y., Prasadam, I., Jia, Z.F., Crawford, R., Xiao, Y., Monteiro, M.J., (2013) Nat. Commun., p. 4; Schutz, C.A., Juillerat-Jeanneret, L., Mueller, H., Lynch, I., Riediker, M., Consortium, N., (2013) Nanomedicine, 8, p. 449; Lytton-Jean, A.K., Kauffman, K.J., Kaczmarek, J.C., Langer, R., (2015) Cancer Treat. Res., 166, p. 293; Etheridge, M.L., Campbell, S.A., Erdman, A.G., Haynes, C.L., Wolf, S.M., McCullough, J., (2013) Nanomed. Nanotechnol., 9, p. 1; Bae, Y.H., Park, K., (2011) J. Controlled Release, 153, p. 198; Park, K., (2013) ACS Nano, 7, p. 7442; Daum, N., Tscheka, C., Neumeyer, A., Schneider, M., (2012) Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 4, p. 52; Toy, R., Peiris, P.M., Ghaghada, K.B., Karathanasis, E., (2014) Nanomed., 9, p. 121; Truong, N.P., Quinn, J.F., Dussert, M.V., Sousa, N.B.T., Whittaker, M.R., Davis, T.P., (2015) ACS Macro Lett., 4, p. 381; Caldorera-Moore, M., Guimard, N., Shi, L., Roy, K., (2010) Expert Opin. Drug Delivery, 7, p. 479; Truong, N.P., Whittaker, M.R., Mak, C.W., Davis, T.P., (2015) Expert Opin. Drug Delivery, 12, p. 129; Geng, Y., Dalhaimer, P., Cai, S., Tsai, R., Tewari, M., Minko, T., Discher, D.E., (2007) Nat. Nanotechnol., 2, p. 249; Vivo, B., Huang, X., Li, L., Liu, T., Hao, N., Liu, H., Chen, D., Tang, F., (2011) ACS Nano, 5, p. 5390; Hu, X.L., Hu, J.M., Tian, J., Ge, Z.S., Zhang, G.Y., Luo, K.F., Liu, S.Y., (2013) J. Am. Chem. Soc., 135, p. 17617; Christian, D.A., Cai, S., Garbuzenko, O.B., Harada, T., Allison, L., Minko, T., Discher, D.E., (2009) Mol. Pharm., 6, p. 1343; Barua, S., Yoo, J.W., Kolhar, P., Wakankar, A., Gokarn, Y.R., Mitragotri, S., (2013) Proc. Natl. Acad. Sci. U. S. A., 110, p. 3270; Karagoz, B., Esser, L., Duong, H.T., Basuki, J.S., Boyer, C., Davis, T.P., (2014) Polym. Chem., 5, p. 350; Kolhar, P., Doshi, N., Mitragotri, S., (2011) Small, 7, p. 2094; Barua, S., Mitragotri, S., (2013) ACS Nano, 7, p. 9558; Zhang, K., Fang, H., Chen, Z., Taylor, J.-S.A., Wooley, K.L., (2008) Bioconjugate Chem., 19, p. 1880; Florez, L., Herrmann, C., Cramer, J.M., Hauser, C.P., Koynov, K., Landfester, K., Crespy, D., Mailander, V., (2012) Small, 8, p. 2222; Zhang, Y., Tekobo, S., Tu, Y., Zhou, Q.F., Jin, X.L., Dergunov, S.A., Pinkhassik, E., Yan, B., (2012) ACS Appl. Mater. Interfaces, 4, p. 4099; Paul, D., Achouri, S., Yoon, Y.Z., Herre, J., Bryant, C.E., Cicuta, P., (2013) Biophys. J., 105, p. 1143; Smith, A.E., Xu, X.W., McCormick, C.L., (2010) Prog. Polym. Sci., 35, p. 45; Roy, D., Brooks, W.L.A., Sumerlin, B.S., (2013) Chem. Soc. Rev., 42, p. 7214; Talelli, M., Hennink, W.E., (2011) Nanomedicine, 6, p. 1245; Convertine, A.J., Lokitz, B.S., Vasileva, Y., Myrick, L.J., Scales, C.W., Lowe, A.B., McCormick, C.L., (2006) Macromolecules, 39, p. 1724; McKee, J.R., Ladmiral, V., Niskanen, J., Tenhu, H., Armes, S.P., (2011) Macromolecules, 44, p. 7692; Sundararaman, A., Stephan, T., Grubbs, R.B., (2008) J. Am. Chem. Soc., 130, p. 12264; Moughton, A.O., Patterson, J.P., O'Reilly, R.K., (2011) Chem. Commun., 47, p. 355; Moughton, A.O., O'Reilly, R.K., (2010) Chem. Commun., 46, p. 1091; Cai, Y., Aubrecht, K.B., Grubbs, R.B., (2011) J. Am. Chem. Soc., 133, p. 1058; Ke, X.X., Wang, L., Xu, J.T., Du, B.Y., Tu, Y.F., Fan, Z.Q., (2014) Soft Matter, 10, p. 5201; Qian, J., Wu, F.P., (2008) Macromolecules, 41, p. 8921; Jia, Z.F., Bobrin, V.A., Truong, N.P., Gillard, M., Monteiro, M.J., (2014) J. Am. Chem. Soc., 136, p. 5824; Qiu, X.P., Tanaka, F., Winnik, F.M., (2007) Macromolecules, 40, p. 7069; Vihola, H., Laukkanen, A., Valtola, L., Tenhu, H., Hirvonen, J., (2005) Biomaterials, 26, p. 3055; Harsh, D.C., Gehrke, S.H., (1991) J. Controlled Release, 17, p. 175; Lavigueur, C., Garcia, J.G., Hendriks, L., Hoogenboom, R., Cornelissen, J.J.L.M., Nolte, R.J.M., (2011) Polym. Chem., 2, p. 333; Lynch, I., Salvati, A., Dawson, K.A., (2009) Nat. Nanotechnol., 4, p. 546; Congdon, T., Shaw, P., Gibson, M.I., (2015) Polym. Chem., 6, p. 4749; Chua, G.B.H., Roth, P.J., Duong, H.T.T., Davis, T.P., Lowe, A.B., (2012) Macromolecules, 45, p. 1362; Lutz, J.F., (2008) J. Polym. Sci., Part A: Polym. Chem., 46, p. 3459; Hu, Z.B., Cai, T., Chi, C.L., (2010) Soft Matter, 6, p. 2115; Vancoillie, G., Frank, D., Hoogenboom, R., (2014) Prog. Polym. Sci., 39, p. 1074; Lutz, J.F., Hoth, A., (2006) Macromolecules, 39, p. 893; Lutz, J.F., Akdemir, O., Hoth, A., (2006) J. Am. Chem. Soc., 128, p. 13046; Han, S., Hagiwara, M., Ishizone, T., (2003) Macromolecules, 36, p. 8312; Jonas, A.M., Glinel, K., Oren, R., Nysten, B., Huck, W.T.S., (2007) Macromolecules, 40, p. 4403; Luzon, M., Boyer, C., Peinado, C., Corrales, T., Whittaker, M., Tao, L., Davis, T.P., (2010) J. Polym. Sci., Part A: Polym. Chem., 48, p. 2783; Lutz, J.F., Weichenhan, K., Akdemir, O., Hoth, A., (2007) Macromolecules, 40, p. 2503; Shen, W.Q., Chang, Y.L., Liu, G.Y., Wang, H.F., Cao, A.N., An, Z.S., (2011) Macromolecules, 44, p. 2524; Khine, Y.Y., Jiang, Y., Dag, A., Lu, H., Stenzel, M.H., (2015) Macromol. Biosci., 15, p. 1091; Lutz, J.F., Andrieu, J., Uzgun, S., Rudolph, C., Agarwal, S., (2007) Macromolecules, 40, p. 8540; Zengin, A., Yildirim, E., Caykara, T., (2013) J. Polym. Sci., Part A: Polym. Chem., 51, p. 954; Wischerhoff, E., Uhlig, K., Lankenau, A., Borner, H.G., Laschewsky, A., Duschl, C., Lutz, J.F., (2008) Angew. Chem., Int. Ed., 47, p. 5666; Truong, N.P., Dussert, M.V., Whittaker, M.R., Quinn, J.F., Davis, T.P., (2015) Polym. Chem., 6, p. 3865; Plummer, R., Hill, D.J.T., Whittaker, A.K., (2006) Macromolecules, 39, p. 8379; Yu, B., Chan, J.W., Hoyle, C.E., Lowe, A.B., (2009) J. Polym. Sci., Part A: Polym. Chem., 47, p. 3544; Tran, N.T.D., Truong, N.P., Gu, W.Y., Jia, Z.F., Cooper, M.A., Monteiro, M.J., (2013) Biomacromolecules, 14, p. 495; Nuhn, L., Barz, M., Zentel, R., (2014) Macromol. Biosci., 14, p. 607; Tucker, B.S., Sumerlin, B.S., (2014) Polym. Chem., 5, p. 1566; Wutzel, H., Richter, F.H., Li, Y., Sheiko, S.S., Klok, H.A., (2014) Polym. Chem., 5, p. 1711; Chang, C.W., Bays, E., Tao, L., Alconcel, S.N.S., Maynard, H.D., (2009) Chem. Commun., p. 3580; Pissuwan, D., Boyer, C., Gunasekaran, K., Davis, T.P., Bulmus, V., (2010) Biomacromolecules, 11, p. 412; Shi, Y., Van Den Dungen, E.T.A., Klumperman, B., Van Nostrum, C.F., Hennink, W.E., (2013) ACS Macro Lett., 2, p. 403; Tasaki, K., (1996) J. Am. Chem. Soc., 118, p. 8459; Israelachvili, J., (1997) Proc. Natl. Acad. Sci. U. S. A., 94, p. 8378; Chee, C.K., Hunt, B.J., Rimmer, S., Rutkaite, R., Soutar, I., Swanson, L., (2009) Soft Matter, 5, p. 3701; De, P., Sumerlin, B.S., (2013) Macromol. Chem. Phys., 214, p. 272; Ward, M.A., Georgiou, T.K., (2011) Polymer, 3, p. 1215; Griffiths, P.C., Hirst, N., Paul, A., King, S.M., Heenan, R.K., Farley, R., (2004) Langmuir, 20, p. 6904; Walter, R., Ricka, J., Quellet, C., Nyffenegger, R., Binkert, T., (1996) Macromolecules, 29, p. 4019; Jia, Z.F., Truong, N.P., Monteiro, M.J., (2013) Polym. Chem., 4, p. 233; Cai, T., Marquez, M., Hu, Z.B., (2007) Langmuir, 23, p. 8663; Lynd, N.A., Meuler, A.J., Hillmyer, M.A., (2008) Prog. Polym. Sci., 33, p. 875; Pietsch, C., Mansfeld, U., Guerrero-Sanchez, C., Hoeppener, S., Vollrath, A., Wagner, M., Hoogenboom, R., Schubert, U.S., (2012) Macromolecules, 45, p. 9292; Barton, A.F.M., (1975) Chem. Rev., 75, p. 731; Mai, Y., Eisenberg, A., (2012) Chem. Soc. Rev., 41, p. 5969; Cameron, N.S., Corbierre, M.K., Eisenberg, A., (1999) Can. J. Chem., 77, p. 1311; Warren, N.J., Armes, S.P., (2014) J. Am. Chem. Soc., 136, p. 10174; Figg, C.A., Simula, A., Gebre, K.A., Tucker, B.S., Haddleton, D.M., Sumerlin, B.S., (2015) Chem. Sci., 6, p. 1230; Holder, S.J., Sommerdijk, N.A.J.M., (2011) Polym. Chem., 2, p. 1018; Rieger, J., (2015) Macromol. Rapid Commun., 36, p. 1458; Guerin, G., Wang, H., Manners, I., Winnik, M.A., (2008) J. Am. Chem. Soc., 130, p. 14763; Gan, Y.D., Dong, D.H., Hogenesch, T.E., (1995) Macromolecules, 28, p. 383; Blanazs, A., Verber, R., Mykhaylyk, O.O., Ryan, A.J., Heath, J.Z., Douglas, C.W.I., Armes, S.P., (2012) J. Am. Chem. Soc., 134, p. 9741",
year = "2016",
month = "1",
day = "14",
doi = "10.1039/c5py01467k",
language = "English",
volume = "7",
pages = "430--440",
journal = "Polymer Chemistry",
issn = "1759-9954",
publisher = "The Royal Society of Chemistry",
number = "2",

}

Facile production of nanoaggregates with tuneable morphologies from thermoresponsive P(DEGMA-co-HPMA). / Truong Phuoc, Nghia; Whittaker, M.R.; Anastasaki, A.; Haddleton, D.M.; Quinn, J.F.; Davis, T.P.

In: Polymer Chemistry, Vol. 7, No. 2, 14.01.2016, p. 430-440.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Facile production of nanoaggregates with tuneable morphologies from thermoresponsive P(DEGMA-co-HPMA)

AU - Truong Phuoc, Nghia

AU - Whittaker, M.R.

AU - Anastasaki, A.

AU - Haddleton, D.M.

AU - Quinn, J.F.

AU - Davis, T.P.

N1 - Cited By :3 Export Date: 25 July 2016 Correspondence Address: Quinn, J.F.; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University ParkvilleAustralia; email: john.f.quinn@monash.edu References: Cheng, C.J., Tietjen, G.T., Saucier-Sawyer, J.K., Saltzman, W.M., (2015) Nat. Rev. Drug Discovery, 14, p. 239; Veiseh, O., Tang, B.C., Whitehead, K.A., Anderson, D.G., Langer, R., (2015) Nat. Rev. Drug Discovery, 14, p. 45; Brinkhuis, R.P., Rutjes, F.P.J.T., Van Hest, J.C.M., (2011) Polym. Chem., 2, p. 1449; Lasic, D.D., Papahadjopoulos, D., (1995) Science, 267, p. 1275; Lammers, T., Kiessling, F., Hennink, W.E., Storm, G., (2012) J. Controlled Release, 161, p. 175; Mitragotri, S., Anderson, D.G., Chen, X., Chow, E.K., Ho, D., Kabanov, A.V., Karp, J.M., Xu, C., (2015) ACS Nano, 9, p. 6644; Howes, P.D., Chandrawati, R., Stevens, M.M., (2014) Science, 346, p. 53; Truong, N.P., Gu, W.Y., Prasadam, I., Jia, Z.F., Crawford, R., Xiao, Y., Monteiro, M.J., (2013) Nat. Commun., p. 4; Schutz, C.A., Juillerat-Jeanneret, L., Mueller, H., Lynch, I., Riediker, M., Consortium, N., (2013) Nanomedicine, 8, p. 449; Lytton-Jean, A.K., Kauffman, K.J., Kaczmarek, J.C., Langer, R., (2015) Cancer Treat. Res., 166, p. 293; Etheridge, M.L., Campbell, S.A., Erdman, A.G., Haynes, C.L., Wolf, S.M., McCullough, J., (2013) Nanomed. Nanotechnol., 9, p. 1; Bae, Y.H., Park, K., (2011) J. Controlled Release, 153, p. 198; Park, K., (2013) ACS Nano, 7, p. 7442; Daum, N., Tscheka, C., Neumeyer, A., Schneider, M., (2012) Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 4, p. 52; Toy, R., Peiris, P.M., Ghaghada, K.B., Karathanasis, E., (2014) Nanomed., 9, p. 121; Truong, N.P., Quinn, J.F., Dussert, M.V., Sousa, N.B.T., Whittaker, M.R., Davis, T.P., (2015) ACS Macro Lett., 4, p. 381; Caldorera-Moore, M., Guimard, N., Shi, L., Roy, K., (2010) Expert Opin. Drug Delivery, 7, p. 479; Truong, N.P., Whittaker, M.R., Mak, C.W., Davis, T.P., (2015) Expert Opin. Drug Delivery, 12, p. 129; Geng, Y., Dalhaimer, P., Cai, S., Tsai, R., Tewari, M., Minko, T., Discher, D.E., (2007) Nat. Nanotechnol., 2, p. 249; Vivo, B., Huang, X., Li, L., Liu, T., Hao, N., Liu, H., Chen, D., Tang, F., (2011) ACS Nano, 5, p. 5390; Hu, X.L., Hu, J.M., Tian, J., Ge, Z.S., Zhang, G.Y., Luo, K.F., Liu, S.Y., (2013) J. Am. Chem. Soc., 135, p. 17617; Christian, D.A., Cai, S., Garbuzenko, O.B., Harada, T., Allison, L., Minko, T., Discher, D.E., (2009) Mol. Pharm., 6, p. 1343; Barua, S., Yoo, J.W., Kolhar, P., Wakankar, A., Gokarn, Y.R., Mitragotri, S., (2013) Proc. Natl. Acad. Sci. U. S. A., 110, p. 3270; Karagoz, B., Esser, L., Duong, H.T., Basuki, J.S., Boyer, C., Davis, T.P., (2014) Polym. Chem., 5, p. 350; Kolhar, P., Doshi, N., Mitragotri, S., (2011) Small, 7, p. 2094; Barua, S., Mitragotri, S., (2013) ACS Nano, 7, p. 9558; Zhang, K., Fang, H., Chen, Z., Taylor, J.-S.A., Wooley, K.L., (2008) Bioconjugate Chem., 19, p. 1880; Florez, L., Herrmann, C., Cramer, J.M., Hauser, C.P., Koynov, K., Landfester, K., Crespy, D., Mailander, V., (2012) Small, 8, p. 2222; Zhang, Y., Tekobo, S., Tu, Y., Zhou, Q.F., Jin, X.L., Dergunov, S.A., Pinkhassik, E., Yan, B., (2012) ACS Appl. Mater. Interfaces, 4, p. 4099; Paul, D., Achouri, S., Yoon, Y.Z., Herre, J., Bryant, C.E., Cicuta, P., (2013) Biophys. J., 105, p. 1143; Smith, A.E., Xu, X.W., McCormick, C.L., (2010) Prog. Polym. Sci., 35, p. 45; Roy, D., Brooks, W.L.A., Sumerlin, B.S., (2013) Chem. Soc. Rev., 42, p. 7214; Talelli, M., Hennink, W.E., (2011) Nanomedicine, 6, p. 1245; Convertine, A.J., Lokitz, B.S., Vasileva, Y., Myrick, L.J., Scales, C.W., Lowe, A.B., McCormick, C.L., (2006) Macromolecules, 39, p. 1724; McKee, J.R., Ladmiral, V., Niskanen, J., Tenhu, H., Armes, S.P., (2011) Macromolecules, 44, p. 7692; Sundararaman, A., Stephan, T., Grubbs, R.B., (2008) J. Am. Chem. Soc., 130, p. 12264; Moughton, A.O., Patterson, J.P., O'Reilly, R.K., (2011) Chem. Commun., 47, p. 355; Moughton, A.O., O'Reilly, R.K., (2010) Chem. Commun., 46, p. 1091; Cai, Y., Aubrecht, K.B., Grubbs, R.B., (2011) J. Am. Chem. Soc., 133, p. 1058; Ke, X.X., Wang, L., Xu, J.T., Du, B.Y., Tu, Y.F., Fan, Z.Q., (2014) Soft Matter, 10, p. 5201; Qian, J., Wu, F.P., (2008) Macromolecules, 41, p. 8921; Jia, Z.F., Bobrin, V.A., Truong, N.P., Gillard, M., Monteiro, M.J., (2014) J. Am. Chem. Soc., 136, p. 5824; Qiu, X.P., Tanaka, F., Winnik, F.M., (2007) Macromolecules, 40, p. 7069; Vihola, H., Laukkanen, A., Valtola, L., Tenhu, H., Hirvonen, J., (2005) Biomaterials, 26, p. 3055; Harsh, D.C., Gehrke, S.H., (1991) J. Controlled Release, 17, p. 175; Lavigueur, C., Garcia, J.G., Hendriks, L., Hoogenboom, R., Cornelissen, J.J.L.M., Nolte, R.J.M., (2011) Polym. Chem., 2, p. 333; Lynch, I., Salvati, A., Dawson, K.A., (2009) Nat. Nanotechnol., 4, p. 546; Congdon, T., Shaw, P., Gibson, M.I., (2015) Polym. Chem., 6, p. 4749; Chua, G.B.H., Roth, P.J., Duong, H.T.T., Davis, T.P., Lowe, A.B., (2012) Macromolecules, 45, p. 1362; Lutz, J.F., (2008) J. Polym. Sci., Part A: Polym. Chem., 46, p. 3459; Hu, Z.B., Cai, T., Chi, C.L., (2010) Soft Matter, 6, p. 2115; Vancoillie, G., Frank, D., Hoogenboom, R., (2014) Prog. Polym. Sci., 39, p. 1074; Lutz, J.F., Hoth, A., (2006) Macromolecules, 39, p. 893; Lutz, J.F., Akdemir, O., Hoth, A., (2006) J. Am. Chem. Soc., 128, p. 13046; Han, S., Hagiwara, M., Ishizone, T., (2003) Macromolecules, 36, p. 8312; Jonas, A.M., Glinel, K., Oren, R., Nysten, B., Huck, W.T.S., (2007) Macromolecules, 40, p. 4403; Luzon, M., Boyer, C., Peinado, C., Corrales, T., Whittaker, M., Tao, L., Davis, T.P., (2010) J. Polym. Sci., Part A: Polym. Chem., 48, p. 2783; Lutz, J.F., Weichenhan, K., Akdemir, O., Hoth, A., (2007) Macromolecules, 40, p. 2503; Shen, W.Q., Chang, Y.L., Liu, G.Y., Wang, H.F., Cao, A.N., An, Z.S., (2011) Macromolecules, 44, p. 2524; Khine, Y.Y., Jiang, Y., Dag, A., Lu, H., Stenzel, M.H., (2015) Macromol. Biosci., 15, p. 1091; Lutz, J.F., Andrieu, J., Uzgun, S., Rudolph, C., Agarwal, S., (2007) Macromolecules, 40, p. 8540; Zengin, A., Yildirim, E., Caykara, T., (2013) J. Polym. Sci., Part A: Polym. Chem., 51, p. 954; Wischerhoff, E., Uhlig, K., Lankenau, A., Borner, H.G., Laschewsky, A., Duschl, C., Lutz, J.F., (2008) Angew. Chem., Int. Ed., 47, p. 5666; Truong, N.P., Dussert, M.V., Whittaker, M.R., Quinn, J.F., Davis, T.P., (2015) Polym. Chem., 6, p. 3865; Plummer, R., Hill, D.J.T., Whittaker, A.K., (2006) Macromolecules, 39, p. 8379; Yu, B., Chan, J.W., Hoyle, C.E., Lowe, A.B., (2009) J. Polym. Sci., Part A: Polym. Chem., 47, p. 3544; Tran, N.T.D., Truong, N.P., Gu, W.Y., Jia, Z.F., Cooper, M.A., Monteiro, M.J., (2013) Biomacromolecules, 14, p. 495; Nuhn, L., Barz, M., Zentel, R., (2014) Macromol. Biosci., 14, p. 607; Tucker, B.S., Sumerlin, B.S., (2014) Polym. Chem., 5, p. 1566; Wutzel, H., Richter, F.H., Li, Y., Sheiko, S.S., Klok, H.A., (2014) Polym. Chem., 5, p. 1711; Chang, C.W., Bays, E., Tao, L., Alconcel, S.N.S., Maynard, H.D., (2009) Chem. Commun., p. 3580; Pissuwan, D., Boyer, C., Gunasekaran, K., Davis, T.P., Bulmus, V., (2010) Biomacromolecules, 11, p. 412; Shi, Y., Van Den Dungen, E.T.A., Klumperman, B., Van Nostrum, C.F., Hennink, W.E., (2013) ACS Macro Lett., 2, p. 403; Tasaki, K., (1996) J. Am. Chem. Soc., 118, p. 8459; Israelachvili, J., (1997) Proc. Natl. Acad. Sci. U. S. A., 94, p. 8378; Chee, C.K., Hunt, B.J., Rimmer, S., Rutkaite, R., Soutar, I., Swanson, L., (2009) Soft Matter, 5, p. 3701; De, P., Sumerlin, B.S., (2013) Macromol. Chem. Phys., 214, p. 272; Ward, M.A., Georgiou, T.K., (2011) Polymer, 3, p. 1215; Griffiths, P.C., Hirst, N., Paul, A., King, S.M., Heenan, R.K., Farley, R., (2004) Langmuir, 20, p. 6904; Walter, R., Ricka, J., Quellet, C., Nyffenegger, R., Binkert, T., (1996) Macromolecules, 29, p. 4019; Jia, Z.F., Truong, N.P., Monteiro, M.J., (2013) Polym. Chem., 4, p. 233; Cai, T., Marquez, M., Hu, Z.B., (2007) Langmuir, 23, p. 8663; Lynd, N.A., Meuler, A.J., Hillmyer, M.A., (2008) Prog. Polym. Sci., 33, p. 875; Pietsch, C., Mansfeld, U., Guerrero-Sanchez, C., Hoeppener, S., Vollrath, A., Wagner, M., Hoogenboom, R., Schubert, U.S., (2012) Macromolecules, 45, p. 9292; Barton, A.F.M., (1975) Chem. Rev., 75, p. 731; Mai, Y., Eisenberg, A., (2012) Chem. Soc. Rev., 41, p. 5969; Cameron, N.S., Corbierre, M.K., Eisenberg, A., (1999) Can. J. Chem., 77, p. 1311; Warren, N.J., Armes, S.P., (2014) J. Am. Chem. Soc., 136, p. 10174; Figg, C.A., Simula, A., Gebre, K.A., Tucker, B.S., Haddleton, D.M., Sumerlin, B.S., (2015) Chem. Sci., 6, p. 1230; Holder, S.J., Sommerdijk, N.A.J.M., (2011) Polym. Chem., 2, p. 1018; Rieger, J., (2015) Macromol. Rapid Commun., 36, p. 1458; Guerin, G., Wang, H., Manners, I., Winnik, M.A., (2008) J. Am. Chem. Soc., 130, p. 14763; Gan, Y.D., Dong, D.H., Hogenesch, T.E., (1995) Macromolecules, 28, p. 383; Blanazs, A., Verber, R., Mykhaylyk, O.O., Ryan, A.J., Heath, J.Z., Douglas, C.W.I., Armes, S.P., (2012) J. Am. Chem. Soc., 134, p. 9741

PY - 2016/1/14

Y1 - 2016/1/14

N2 - Thermoresponsive polymers are used to produce nanoparticles or nanoaggregates for a wide range of applications such as nanomedicine. However, low-toxicity, thermoresponsive polymers such as methacrylate polymers with short oligo(ethylene glycol) side chains are not readily applicable to the synthesis of nanoaggregates with both spherical and nonspherical morphologies. Here we report the synthesis of a low-toxicity, thermoresponsive copolymer, P(DEGMA-co-HPMA), and describe its application in the RAFT-mediated emulsion polymerization of styrene as a means to produce nanoparticles with tuneable morphology (sphere, cylinder, vesicle and lamella). These nanoaggregates offer considerable potential as a novel platform for the next generation of nanotherapeutics with improved efficacy.

AB - Thermoresponsive polymers are used to produce nanoparticles or nanoaggregates for a wide range of applications such as nanomedicine. However, low-toxicity, thermoresponsive polymers such as methacrylate polymers with short oligo(ethylene glycol) side chains are not readily applicable to the synthesis of nanoaggregates with both spherical and nonspherical morphologies. Here we report the synthesis of a low-toxicity, thermoresponsive copolymer, P(DEGMA-co-HPMA), and describe its application in the RAFT-mediated emulsion polymerization of styrene as a means to produce nanoparticles with tuneable morphology (sphere, cylinder, vesicle and lamella). These nanoaggregates offer considerable potential as a novel platform for the next generation of nanotherapeutics with improved efficacy.

KW - Emulsification

KW - Emulsion polymerization

KW - Ethylene

KW - Ethylene glycol

KW - Medical nanotechnology

KW - Nanoparticles

KW - Styrene

KW - Synthesis (chemical)

KW - Toxicity

KW - Facile production

KW - ITS applications

KW - Methacrylate polymers

KW - Nanoaggregates

KW - Oligo(ethylene glycol)

KW - Thermo-responsive

KW - Thermo-responsive copolymers

KW - Thermoresponsive polymer

KW - Morphology

UR - http://www.scopus.com/inward/record.url?scp=84952801874&partnerID=8YFLogxK

U2 - 10.1039/c5py01467k

DO - 10.1039/c5py01467k

M3 - Article

VL - 7

SP - 430

EP - 440

JO - Polymer Chemistry

JF - Polymer Chemistry

SN - 1759-9954

IS - 2

ER -