Fabrication of asymmetrical diffusion dialysis membranes for rapid acid recovery with high purity

Xiaocheng Lin, Ezzatollah Shamsaei, Biao Kong, Jefferson Zhe Liu, Tongwen Xu, Huanting Wang

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Anion exchange membranes with fast acid permeation and high retention of salts are urgently needed to increase the process efficiency of acid recovery from various industrial processes via diffusion dialysis, thereby greatly reducing their energy consumption and environmental impact. In this work, we have developed a novel one-step method of simultaneous crosslinking and quaternization for the fabrication of high-performance diffusion dialysis membranes. As an example, porous brominated poly(phenyleneoxide) (BPPO) ultrafiltration membranes with a thin active layer (<1 μm thick) were prepared and then converted to diffusion dialysis membranes by simple immersion in N,N,N′,N′-tetramethylethylenediamine (TEMED) aqueous solution. Manipulation of crosslinking and quaternization degrees by control of the reaction time enabled the optimisation of the membrane performance. Apart from outstanding thermal stability and chemical resistance in an acidic environment, our membranes had remarkably improved performance due to the thin skin layer (<1 μm thick) and porous support, as compared to conventional dense membranes. The optimal membrane (TPPO-4h) showed a high proton dialysis coefficient (UH+) of 0.043 m h-1 and a high separation factor (S) of 73.8 for HCl recovery from HCl/FeCl2 solution, which are a 5.1 and 4 times increase of the corresponding values of the commercial DF-120 membrane. In other words, the process capacity for acid recovery from the acidic waste solution can be increased from 11.3 to 57.8 L m-2 d-1, with 3 times increase in acid purity, by replacing DF-120 with the TPPO-4h membrane. The strategy developed in this work is very promising for developing high-performance anion exchange membranes for the rapid recovery of acid with high purity in many industrial processes.
Original languageEnglish
Pages (from-to)24000-24007
Number of pages8
JournalJournal of Materials Chemistry A
Volume3
Issue number47
DOIs
Publication statusPublished - 2015

Cite this

Lin, Xiaocheng ; Shamsaei, Ezzatollah ; Kong, Biao ; Liu, Jefferson Zhe ; Xu, Tongwen ; Wang, Huanting. / Fabrication of asymmetrical diffusion dialysis membranes for rapid acid recovery with high purity. In: Journal of Materials Chemistry A. 2015 ; Vol. 3, No. 47. pp. 24000-24007.
@article{d046c7eeec184436b480af9006e8a718,
title = "Fabrication of asymmetrical diffusion dialysis membranes for rapid acid recovery with high purity",
abstract = "Anion exchange membranes with fast acid permeation and high retention of salts are urgently needed to increase the process efficiency of acid recovery from various industrial processes via diffusion dialysis, thereby greatly reducing their energy consumption and environmental impact. In this work, we have developed a novel one-step method of simultaneous crosslinking and quaternization for the fabrication of high-performance diffusion dialysis membranes. As an example, porous brominated poly(phenyleneoxide) (BPPO) ultrafiltration membranes with a thin active layer (<1 μm thick) were prepared and then converted to diffusion dialysis membranes by simple immersion in N,N,N′,N′-tetramethylethylenediamine (TEMED) aqueous solution. Manipulation of crosslinking and quaternization degrees by control of the reaction time enabled the optimisation of the membrane performance. Apart from outstanding thermal stability and chemical resistance in an acidic environment, our membranes had remarkably improved performance due to the thin skin layer (<1 μm thick) and porous support, as compared to conventional dense membranes. The optimal membrane (TPPO-4h) showed a high proton dialysis coefficient (UH+) of 0.043 m h-1 and a high separation factor (S) of 73.8 for HCl recovery from HCl/FeCl2 solution, which are a 5.1 and 4 times increase of the corresponding values of the commercial DF-120 membrane. In other words, the process capacity for acid recovery from the acidic waste solution can be increased from 11.3 to 57.8 L m-2 d-1, with 3 times increase in acid purity, by replacing DF-120 with the TPPO-4h membrane. The strategy developed in this work is very promising for developing high-performance anion exchange membranes for the rapid recovery of acid with high purity in many industrial processes.",
author = "Xiaocheng Lin and Ezzatollah Shamsaei and Biao Kong and Liu, {Jefferson Zhe} and Tongwen Xu and Huanting Wang",
year = "2015",
doi = "10.1039/c5ta05185a",
language = "English",
volume = "3",
pages = "24000--24007",
journal = "Journal of Materials Chemistry A",
issn = "2050-7488",
publisher = "The Royal Society of Chemistry",
number = "47",

}

Fabrication of asymmetrical diffusion dialysis membranes for rapid acid recovery with high purity. / Lin, Xiaocheng; Shamsaei, Ezzatollah; Kong, Biao; Liu, Jefferson Zhe; Xu, Tongwen; Wang, Huanting.

In: Journal of Materials Chemistry A, Vol. 3, No. 47, 2015, p. 24000-24007.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Fabrication of asymmetrical diffusion dialysis membranes for rapid acid recovery with high purity

AU - Lin, Xiaocheng

AU - Shamsaei, Ezzatollah

AU - Kong, Biao

AU - Liu, Jefferson Zhe

AU - Xu, Tongwen

AU - Wang, Huanting

PY - 2015

Y1 - 2015

N2 - Anion exchange membranes with fast acid permeation and high retention of salts are urgently needed to increase the process efficiency of acid recovery from various industrial processes via diffusion dialysis, thereby greatly reducing their energy consumption and environmental impact. In this work, we have developed a novel one-step method of simultaneous crosslinking and quaternization for the fabrication of high-performance diffusion dialysis membranes. As an example, porous brominated poly(phenyleneoxide) (BPPO) ultrafiltration membranes with a thin active layer (<1 μm thick) were prepared and then converted to diffusion dialysis membranes by simple immersion in N,N,N′,N′-tetramethylethylenediamine (TEMED) aqueous solution. Manipulation of crosslinking and quaternization degrees by control of the reaction time enabled the optimisation of the membrane performance. Apart from outstanding thermal stability and chemical resistance in an acidic environment, our membranes had remarkably improved performance due to the thin skin layer (<1 μm thick) and porous support, as compared to conventional dense membranes. The optimal membrane (TPPO-4h) showed a high proton dialysis coefficient (UH+) of 0.043 m h-1 and a high separation factor (S) of 73.8 for HCl recovery from HCl/FeCl2 solution, which are a 5.1 and 4 times increase of the corresponding values of the commercial DF-120 membrane. In other words, the process capacity for acid recovery from the acidic waste solution can be increased from 11.3 to 57.8 L m-2 d-1, with 3 times increase in acid purity, by replacing DF-120 with the TPPO-4h membrane. The strategy developed in this work is very promising for developing high-performance anion exchange membranes for the rapid recovery of acid with high purity in many industrial processes.

AB - Anion exchange membranes with fast acid permeation and high retention of salts are urgently needed to increase the process efficiency of acid recovery from various industrial processes via diffusion dialysis, thereby greatly reducing their energy consumption and environmental impact. In this work, we have developed a novel one-step method of simultaneous crosslinking and quaternization for the fabrication of high-performance diffusion dialysis membranes. As an example, porous brominated poly(phenyleneoxide) (BPPO) ultrafiltration membranes with a thin active layer (<1 μm thick) were prepared and then converted to diffusion dialysis membranes by simple immersion in N,N,N′,N′-tetramethylethylenediamine (TEMED) aqueous solution. Manipulation of crosslinking and quaternization degrees by control of the reaction time enabled the optimisation of the membrane performance. Apart from outstanding thermal stability and chemical resistance in an acidic environment, our membranes had remarkably improved performance due to the thin skin layer (<1 μm thick) and porous support, as compared to conventional dense membranes. The optimal membrane (TPPO-4h) showed a high proton dialysis coefficient (UH+) of 0.043 m h-1 and a high separation factor (S) of 73.8 for HCl recovery from HCl/FeCl2 solution, which are a 5.1 and 4 times increase of the corresponding values of the commercial DF-120 membrane. In other words, the process capacity for acid recovery from the acidic waste solution can be increased from 11.3 to 57.8 L m-2 d-1, with 3 times increase in acid purity, by replacing DF-120 with the TPPO-4h membrane. The strategy developed in this work is very promising for developing high-performance anion exchange membranes for the rapid recovery of acid with high purity in many industrial processes.

UR - http://www.scopus.com/inward/record.url?scp=84948418227&partnerID=8YFLogxK

U2 - 10.1039/c5ta05185a

DO - 10.1039/c5ta05185a

M3 - Article

VL - 3

SP - 24000

EP - 24007

JO - Journal of Materials Chemistry A

JF - Journal of Materials Chemistry A

SN - 2050-7488

IS - 47

ER -