Expression of pituitary adenylate cyclase activating polypeptide type 1 receptor (PAC1R) in the ewe hypothalamus: distribution and colocalization with tyrosine hydroxylase-immunoreactive neurones

S T Anderson, D HL Kusters, Iain James Clarke, D V Pow, J D Curlewis

Research output: Contribution to journalArticleResearchpeer-review

8 Citations (Scopus)


We have examined the distribution of the pituitary adenylate cyclase activating polypeptide type I receptor (PAC1R) in the ewe hypothalamus by reverse transcription-polymerase chain reaction, in situ hybridization and immunohistochemistry. PAC1R mRNA was highly expressed in the mediobasal hypothalamus of the ewe, particularly in the arcuate nucleus and ventromedial hypothalamus, compared to other hypothalamic regions. Similar results were obtained from immunohistochemistry using a specific PAC1R antibody. Intense immunolabelling was observed in the arcuate nucleus, external zone of the median eminence and ventromedial hypothalamus. Only relatively weak immunolabelling was observed in other hypothalamic regions, including the paraventricular nucleus and supraoptic nucleus. In the ewe, PACAP acts via the arcuate nucleus to suppress prolactin secretion. Therefore we examined whether PAC1R was present on the tuberoinfundibular dopamine (TIDA) neurones in this nucleus. Dual immunofluorescence labelling for PAC1R and tyrosine hydroxylase revealed that 21.2 +/- 1.7 of dopaminergic neurones in the arcuate nucleus (A12 cell group) also stained for PAC1R. By contrast, other hypothalamic dopaminergic cell groups (A11, A13, A14 and A15) exhibited little (<3 ) or no colocalization. Overall, our results indicate that, in the ewe hypothalamus, PAC1R is most concentrated in the arcuate nucleus, where it is localized on a substantial proportion of dopaminergic neurones. These observations, together with previous in vivo studies, suggest that PACAP could act directly on TIDA neurones via PAC1R to increase dopamine release and consequently inhibit prolactin secretion in the sheep.
Original languageEnglish
Pages (from-to)298 - 305
Number of pages8
JournalJournal of Neuroendocrinology
Issue number5
Publication statusPublished - 2005
Externally publishedYes

Cite this