TY - JOUR
T1 - Expression of nucleocytoplasmic transport machinery: Clues to regulation of spermatogenic development
AU - Major, Andrew
AU - Whiley, Penelope Alexandra Falshaw
AU - Loveland, Katherine Ann Lakoski
PY - 2011
Y1 - 2011
N2 - Spermatogenesis is one example of a developmental process which requires tight control of gene expression to achieve normal growth and sustain function. This review is based on the principle that events in spermatogenesis are controlled by changes in the distribution of proteins between the nuclear and cytoplasmic compartments. Through analysis of the regulated production of nucleocytoplasmic transport machinery in mammalian spermatogenesis, this review addresses the concept that access to the nucleus is tightly controlled to enable and prevent differentiation. A broad review of nuclear transport components is presented, outlining the different categories of machinery required for import, export and non-nuclear functions. In addition, the complexity of nomenclature is addressed by the provision of a concise yet comprehensive listing of information that will aid in comparative studies of different transport proteins and the genes which encode them. We review a suite of existing transcriptional analyses which identify common and distinct patterns of transport machinery expression, showing how these can be linked with key events in spermatogenic development. The additional importance of this for human fertility is considered, in light of data that identify which importin and nuclear transport machinery components are present in testicular cancer specimens, while also providing an indication of how their presence (and absence) may be considered as potential mediators of oncogenesis. This article is part of a Special Issue entitled: Regulated nuclear protein import.
AB - Spermatogenesis is one example of a developmental process which requires tight control of gene expression to achieve normal growth and sustain function. This review is based on the principle that events in spermatogenesis are controlled by changes in the distribution of proteins between the nuclear and cytoplasmic compartments. Through analysis of the regulated production of nucleocytoplasmic transport machinery in mammalian spermatogenesis, this review addresses the concept that access to the nucleus is tightly controlled to enable and prevent differentiation. A broad review of nuclear transport components is presented, outlining the different categories of machinery required for import, export and non-nuclear functions. In addition, the complexity of nomenclature is addressed by the provision of a concise yet comprehensive listing of information that will aid in comparative studies of different transport proteins and the genes which encode them. We review a suite of existing transcriptional analyses which identify common and distinct patterns of transport machinery expression, showing how these can be linked with key events in spermatogenic development. The additional importance of this for human fertility is considered, in light of data that identify which importin and nuclear transport machinery components are present in testicular cancer specimens, while also providing an indication of how their presence (and absence) may be considered as potential mediators of oncogenesis. This article is part of a Special Issue entitled: Regulated nuclear protein import.
UR - http://www.ncbi.nlm.nih.gov/pubmed/21420444
U2 - 10.1016/j.bbamcr.2011.03.008
DO - 10.1016/j.bbamcr.2011.03.008
M3 - Article
SN - 0167-4889
VL - 1813
SP - 1668
EP - 1688
JO - BBA Molecular Cell Research
JF - BBA Molecular Cell Research
IS - 9
ER -