Expression of glucocorticoid receptor, mineralocorticoid receptor, and 11beta-hydroxysteroid dehydrogenase 1 and 2 in the fetal and postnatal ovine hippocampus: Ontogeny and effects of prenatal glucocorticoid exposure

Deborah M Sloboda, Timothy Moss, Shaofu Li, Stephen Matthews, John Challis, John Newnham

Research output: Contribution to journalArticleResearchpeer-review

35 Citations (Scopus)


To determine the expression of glucocorticoid metabolizing and action genes in the hippocampus of fetal, neonatal, and adult sheep. Pregnant ewes (or their fetuses) received intramuscular injections of saline or betamethasone (BETA, 0-5 mg/kg) at 104, 111, 118, and/or 125 days of gestation (dG). Hippocampal tissue was collected prior to (75, 84, and 101 dG), during (109 and 116 dG), or after (121, 132, and 146 dG; 6 and 12 postnatal weeks; 3.5 years of age) saline or BETA injections. Hippocampal glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and 11beta-hydroxysteroid dehydrogenase (11betaHSD)1 and 11betaHSD2 mRNA levels were determined using qRT-PCR. Control animals late in gestation demonstrated a decrease in mRNA encoding GR and 11betaHSD1, whereas 11betaHSD2 was undetectable, consistent with a damping of the negative feedback influence of circulating or locally produced cortisol on the hypothalamic-pituitary-adrenal (HPA) axis. BETA-administration had transient effects on fetal GR and MR, and early in postnatal life (12 weeks of age) 11betaHSD1 mRNA was increased. Hippocampal MR mRNA was elevated in adult offspring exposed to either one or four doses of maternal BETA (P
Original languageEnglish
Pages (from-to)213 - 220
Number of pages8
JournalJournal of Endocrinology
Issue number2
Publication statusPublished - 2008
Externally publishedYes

Cite this