TY - JOUR
T1 - Expression of a chimeric antigen receptor in multiple leukocyte lineages in transgenic mice
AU - Yong, Carmen S M
AU - Westwood, Jennifer A
AU - Schroder, Jan F
AU - Papenfuss, Anthony Troy
AU - von Scheidt, Bianca
AU - Moeller, Maria
AU - Devaud, Christel
AU - Darcy, Phillip K
AU - Kershaw, Michael H
PY - 2015
Y1 - 2015
N2 - Genetically modified CD8+ T lymphocytes have shown significant anti-tumor effects in the adoptive immunotherapy of cancer, with recent studies highlighting a potential role for a combination of other immune subsets to enhance these results. However, limitations in present genetic modification techniques impose difficulties in our ability to fully explore the potential of various T cell subsets and assess the potential of other leukocytes armed with chimeric antigen receptors (CARs). To address this issue, we generated a transgenic mouse model using a pan-hematopoietic promoter (vav) to drive the expression of a CAR specific for a tumor antigen. Here we present a characterization of the immune cell compartment in two unique vav-CAR transgenic mice models, Founder 9 (F9) and Founder 38 (F38). We demonstrate the vav promoter is indeed capable of driving the expression of a CAR in cells from both myeloid and lymphoid lineage, however the highest level of expression was observed in T lymphocytes from F38 mice. Lymphoid organs invav-CAR mice were smaller and had reduced cell numbers compared to the wild type (WT) controls. Furthermore, the immune composition of F9 mice differed greatly with a significant reduction in lymphocytes found in the thymus, lymph node and spleen of these mice. To gain insight into the altered immune phenotype of F9 mice, we determined the chromosomal integration site of the transgene in both mouse strains using whole genome sequencing (WGS). We demonstrated that compared to the 7 copies found in F38 mice, F9 mice harbored almost 270 copies. These novel vav-CAR models provide a ready source of CAR expressing myeloid and lymphoid cells and will aid in facilitating future experiments to delineate the role for other leukocytes for adoptive immunotherapy against cancer. ? 2015 Yong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
AB - Genetically modified CD8+ T lymphocytes have shown significant anti-tumor effects in the adoptive immunotherapy of cancer, with recent studies highlighting a potential role for a combination of other immune subsets to enhance these results. However, limitations in present genetic modification techniques impose difficulties in our ability to fully explore the potential of various T cell subsets and assess the potential of other leukocytes armed with chimeric antigen receptors (CARs). To address this issue, we generated a transgenic mouse model using a pan-hematopoietic promoter (vav) to drive the expression of a CAR specific for a tumor antigen. Here we present a characterization of the immune cell compartment in two unique vav-CAR transgenic mice models, Founder 9 (F9) and Founder 38 (F38). We demonstrate the vav promoter is indeed capable of driving the expression of a CAR in cells from both myeloid and lymphoid lineage, however the highest level of expression was observed in T lymphocytes from F38 mice. Lymphoid organs invav-CAR mice were smaller and had reduced cell numbers compared to the wild type (WT) controls. Furthermore, the immune composition of F9 mice differed greatly with a significant reduction in lymphocytes found in the thymus, lymph node and spleen of these mice. To gain insight into the altered immune phenotype of F9 mice, we determined the chromosomal integration site of the transgene in both mouse strains using whole genome sequencing (WGS). We demonstrated that compared to the 7 copies found in F38 mice, F9 mice harbored almost 270 copies. These novel vav-CAR models provide a ready source of CAR expressing myeloid and lymphoid cells and will aid in facilitating future experiments to delineate the role for other leukocytes for adoptive immunotherapy against cancer. ? 2015 Yong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
UR - http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624721/pdf/pone.0140543.pdf
U2 - 10.1371/journal.pone.0140543
DO - 10.1371/journal.pone.0140543
M3 - Article
SN - 1932-6203
VL - 10
JO - PLoS ONE
JF - PLoS ONE
IS - 10
M1 - e0140543
ER -