Abstract
This work investigates the kinetics of CO2 hydrogenation to methanol on In2O3/ CeO2 catalyst based on a dual-site Langmuir-Hinshelwood mechanism. Such studies on reaction kinetics and mechanism using In2O3 catalyst, which possesses high activity, selectivity and stability are limited. Thirteen sets of experimental data at steady-state using In2O3/ CeO2 catalyst with varying temperature (200–300 °C), pressure (1–50 bars), gas hourly space velocity (5,893 hr−1 −58,938 hr−1) were analysed. The experimental data were modelled to determine the rate-determining step and the rate expression using the Most-Abundant Reaction Intermediate (MARI) analysis. The reaction mechanism for this catalyst was proposed based on a reported DFT study on In2O3. An optimisation procedure was performed to identify new kinetic parameters using MATLAB-based code with nonlinear regression analysis. A comparison of estimated kinetic parameters was made with reported values. The derived kinetic model can be applied for reactor modelling in the future for scaling up purposes.
| Original language | English |
|---|---|
| Article number | 118885 |
| Number of pages | 9 |
| Journal | Applied Catalysis A: General |
| Volume | 646 |
| DOIs | |
| Publication status | Published - 25 Sept 2022 |
Keywords
- CO hydrogenation
- Indium oxide
- Kinetic model
- Methanol synthesis
- Rate-determining step