TY - JOUR
T1 - Experimental traumatic brain injury induces a pervasive hyperanxious phenotype in rats
AU - Jones, Nigel C.
AU - Cardamone, Lisa
AU - Williams, John P.
AU - Salzberg, Michael R.
AU - Myers, Damian
AU - O'Brien, Terence J.
PY - 2008/11/1
Y1 - 2008/11/1
N2 - Mood disturbances, including depression and anxiety disorders, are common and disabling long-term sequelae of traumatic brain injury (TBI). These psychiatric conditions have generally been considered psychosocial consequences of the trauma, but neurobiological alterations and causes have also been implicated. Using a rat model of TBI (lateral fluid-percussion injury), this longitudinal study seeks to assess anxiety and depression-like behaviors following experimental TBI. Male Wistar rats (n = 20) received a severe (∼3.5 atmosphere) pressure pulse directed to the right sensorimotor cortex, or sham surgery (n = 15). At 1, 3, and 6 months following injury, all rats underwent four assessments of anxiety and depression-like behaviors: exposure to an open field, elevated plus maze test, the forced swim test, and the sucrose preference test. Injured animals displayed increased anxiety-like behaviors throughout the study, as evidenced by reduced time spent (p = 0.014) and reduced entries (p < 0.001) into the center area of the open field, and reduced proportion of time in the open arms of the plus maze (p = 0.015), compared to sham-injured controls. These striking changes were particularly evident 1 and 3 months after injury. No differences were observed in depression-like behaviors in the forced swim test (a measure of behavioral despair) and the sucrose preference test (a measure of anhedonia). This report provides the first evidence of persistent anxiety-like disturbances in an experimental model of TBI. This finding indicates that the common occurrence of these symptoms in human sufferers is likely to have, at least in part, a neurobiological basis. Studies in this model could provide insight into the mechanisms underlying affective disturbance in brain-injured patients.
AB - Mood disturbances, including depression and anxiety disorders, are common and disabling long-term sequelae of traumatic brain injury (TBI). These psychiatric conditions have generally been considered psychosocial consequences of the trauma, but neurobiological alterations and causes have also been implicated. Using a rat model of TBI (lateral fluid-percussion injury), this longitudinal study seeks to assess anxiety and depression-like behaviors following experimental TBI. Male Wistar rats (n = 20) received a severe (∼3.5 atmosphere) pressure pulse directed to the right sensorimotor cortex, or sham surgery (n = 15). At 1, 3, and 6 months following injury, all rats underwent four assessments of anxiety and depression-like behaviors: exposure to an open field, elevated plus maze test, the forced swim test, and the sucrose preference test. Injured animals displayed increased anxiety-like behaviors throughout the study, as evidenced by reduced time spent (p = 0.014) and reduced entries (p < 0.001) into the center area of the open field, and reduced proportion of time in the open arms of the plus maze (p = 0.015), compared to sham-injured controls. These striking changes were particularly evident 1 and 3 months after injury. No differences were observed in depression-like behaviors in the forced swim test (a measure of behavioral despair) and the sucrose preference test (a measure of anhedonia). This report provides the first evidence of persistent anxiety-like disturbances in an experimental model of TBI. This finding indicates that the common occurrence of these symptoms in human sufferers is likely to have, at least in part, a neurobiological basis. Studies in this model could provide insight into the mechanisms underlying affective disturbance in brain-injured patients.
KW - Anxiety
KW - Behavior
KW - Depression
KW - Rat
KW - Traumatic brain injury
UR - http://www.scopus.com/inward/record.url?scp=57349191554&partnerID=8YFLogxK
U2 - 10.1089/neu.2008.0641
DO - 10.1089/neu.2008.0641
M3 - Article
C2 - 19061380
AN - SCOPUS:57349191554
SN - 0897-7151
VL - 25
SP - 1367
EP - 1374
JO - Journal of Neurotrauma
JF - Journal of Neurotrauma
IS - 11
ER -