Experimental modelling of the consequences of brief late gestation asphyxia on newborn lamb behaviour and brain structure

Margie Esmeralda Zakhem, Ana Aradhna Baburamani, Carlos Cabalag, Tamara Yawno, Anissa Witjaksono, Suzanne Lee Miller, David William Walker

Research output: Contribution to journalArticleResearchpeer-review

19 Citations (Scopus)

Abstract

Brief but severe asphyxia in late gestation or at the time of birth may lead to neonatal hypoxic ischemic encephalopathy and is associated with long-term neurodevelopmental impairment. We undertook this study to examine the consequences of transient in utero asphyxia in late gestation fetal sheep, on the newborn lamb after birth. Surgery was undertaken at 125 days gestation for implantation of fetal catheters and placement of a silastic cuff around the umbilical cord. At 132 days gestation (0.89 term), the cuff was inflated to induce umbilical cord occlusion (UCO), or sham (control). Fetal arterial blood samples were collected for assessment of fetal wellbeing and the pregnancy continued until birth. At birth, behavioral milestones for newborn lambs were recorded over 24 h, after which the lambs were euthanased for brain collection and histopathology assessments. After birth, UCO lambs displayed significant latencies to (i) use all four legs, (ii) attain a standing position, (iii) find the udder, and (iv) successfully suckle - compared to control lambs. Brains of UCO lambs showed widespread pathologies including cell death, white matter disruption, intra-parenchymal hemorrhage and inflammation, which were not observed in full term control brains. UCO resulted in some preterm births, but comparison with age-matched preterm non-UCO control lambs showed that prematurity per se was not responsible for the behavioral delays and brain structural abnormalities resulting from the in utero asphyxia. These results demonstrate that a single, brief fetal asphyxic episode in late gestation results in significant grey and white matter disruption in the developing brain, and causes significant behavioral delay in newborn lambs. These data are consistent with clinical observations that antenatal asphyxia is causal in the development of neonatal encephalopathy and provide an experimental model to advance our understanding of neuroprotective therapies.
Original languageEnglish
Article numbere77377
Number of pages13
JournalPLoS ONE
Volume8
Issue number11
DOIs
Publication statusPublished - 2013

Cite this

@article{5e9f562eac35473cac0799ae8f7d45fb,
title = "Experimental modelling of the consequences of brief late gestation asphyxia on newborn lamb behaviour and brain structure",
abstract = "Brief but severe asphyxia in late gestation or at the time of birth may lead to neonatal hypoxic ischemic encephalopathy and is associated with long-term neurodevelopmental impairment. We undertook this study to examine the consequences of transient in utero asphyxia in late gestation fetal sheep, on the newborn lamb after birth. Surgery was undertaken at 125 days gestation for implantation of fetal catheters and placement of a silastic cuff around the umbilical cord. At 132 days gestation (0.89 term), the cuff was inflated to induce umbilical cord occlusion (UCO), or sham (control). Fetal arterial blood samples were collected for assessment of fetal wellbeing and the pregnancy continued until birth. At birth, behavioral milestones for newborn lambs were recorded over 24 h, after which the lambs were euthanased for brain collection and histopathology assessments. After birth, UCO lambs displayed significant latencies to (i) use all four legs, (ii) attain a standing position, (iii) find the udder, and (iv) successfully suckle - compared to control lambs. Brains of UCO lambs showed widespread pathologies including cell death, white matter disruption, intra-parenchymal hemorrhage and inflammation, which were not observed in full term control brains. UCO resulted in some preterm births, but comparison with age-matched preterm non-UCO control lambs showed that prematurity per se was not responsible for the behavioral delays and brain structural abnormalities resulting from the in utero asphyxia. These results demonstrate that a single, brief fetal asphyxic episode in late gestation results in significant grey and white matter disruption in the developing brain, and causes significant behavioral delay in newborn lambs. These data are consistent with clinical observations that antenatal asphyxia is causal in the development of neonatal encephalopathy and provide an experimental model to advance our understanding of neuroprotective therapies.",
author = "Zakhem, {Margie Esmeralda} and Baburamani, {Ana Aradhna} and Carlos Cabalag and Tamara Yawno and Anissa Witjaksono and Miller, {Suzanne Lee} and Walker, {David William}",
year = "2013",
doi = "10.1371/journal.pone.0077377",
language = "English",
volume = "8",
journal = "PLoS ONE",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "11",

}

Experimental modelling of the consequences of brief late gestation asphyxia on newborn lamb behaviour and brain structure. / Zakhem, Margie Esmeralda; Baburamani, Ana Aradhna; Cabalag, Carlos; Yawno, Tamara; Witjaksono, Anissa; Miller, Suzanne Lee; Walker, David William.

In: PLoS ONE, Vol. 8, No. 11, e77377, 2013.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Experimental modelling of the consequences of brief late gestation asphyxia on newborn lamb behaviour and brain structure

AU - Zakhem, Margie Esmeralda

AU - Baburamani, Ana Aradhna

AU - Cabalag, Carlos

AU - Yawno, Tamara

AU - Witjaksono, Anissa

AU - Miller, Suzanne Lee

AU - Walker, David William

PY - 2013

Y1 - 2013

N2 - Brief but severe asphyxia in late gestation or at the time of birth may lead to neonatal hypoxic ischemic encephalopathy and is associated with long-term neurodevelopmental impairment. We undertook this study to examine the consequences of transient in utero asphyxia in late gestation fetal sheep, on the newborn lamb after birth. Surgery was undertaken at 125 days gestation for implantation of fetal catheters and placement of a silastic cuff around the umbilical cord. At 132 days gestation (0.89 term), the cuff was inflated to induce umbilical cord occlusion (UCO), or sham (control). Fetal arterial blood samples were collected for assessment of fetal wellbeing and the pregnancy continued until birth. At birth, behavioral milestones for newborn lambs were recorded over 24 h, after which the lambs were euthanased for brain collection and histopathology assessments. After birth, UCO lambs displayed significant latencies to (i) use all four legs, (ii) attain a standing position, (iii) find the udder, and (iv) successfully suckle - compared to control lambs. Brains of UCO lambs showed widespread pathologies including cell death, white matter disruption, intra-parenchymal hemorrhage and inflammation, which were not observed in full term control brains. UCO resulted in some preterm births, but comparison with age-matched preterm non-UCO control lambs showed that prematurity per se was not responsible for the behavioral delays and brain structural abnormalities resulting from the in utero asphyxia. These results demonstrate that a single, brief fetal asphyxic episode in late gestation results in significant grey and white matter disruption in the developing brain, and causes significant behavioral delay in newborn lambs. These data are consistent with clinical observations that antenatal asphyxia is causal in the development of neonatal encephalopathy and provide an experimental model to advance our understanding of neuroprotective therapies.

AB - Brief but severe asphyxia in late gestation or at the time of birth may lead to neonatal hypoxic ischemic encephalopathy and is associated with long-term neurodevelopmental impairment. We undertook this study to examine the consequences of transient in utero asphyxia in late gestation fetal sheep, on the newborn lamb after birth. Surgery was undertaken at 125 days gestation for implantation of fetal catheters and placement of a silastic cuff around the umbilical cord. At 132 days gestation (0.89 term), the cuff was inflated to induce umbilical cord occlusion (UCO), or sham (control). Fetal arterial blood samples were collected for assessment of fetal wellbeing and the pregnancy continued until birth. At birth, behavioral milestones for newborn lambs were recorded over 24 h, after which the lambs were euthanased for brain collection and histopathology assessments. After birth, UCO lambs displayed significant latencies to (i) use all four legs, (ii) attain a standing position, (iii) find the udder, and (iv) successfully suckle - compared to control lambs. Brains of UCO lambs showed widespread pathologies including cell death, white matter disruption, intra-parenchymal hemorrhage and inflammation, which were not observed in full term control brains. UCO resulted in some preterm births, but comparison with age-matched preterm non-UCO control lambs showed that prematurity per se was not responsible for the behavioral delays and brain structural abnormalities resulting from the in utero asphyxia. These results demonstrate that a single, brief fetal asphyxic episode in late gestation results in significant grey and white matter disruption in the developing brain, and causes significant behavioral delay in newborn lambs. These data are consistent with clinical observations that antenatal asphyxia is causal in the development of neonatal encephalopathy and provide an experimental model to advance our understanding of neuroprotective therapies.

UR - http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3819360/pdf/pone.0077377.pdf

U2 - 10.1371/journal.pone.0077377

DO - 10.1371/journal.pone.0077377

M3 - Article

VL - 8

JO - PLoS ONE

JF - PLoS ONE

SN - 1932-6203

IS - 11

M1 - e77377

ER -