Projects per year
Abstract
Pneumatic conveying of absorber spheres in the pebble-bed high-temperature gas-cooled reactor is a special application of pneumatic conveying technique in the nuclear engineering. It may be regarded as an intermittent circulation of absorber spheres between the side reflector boring and the storage bin in the reactor. The whole process consists of several sub-processes, e.g., the granular discharge from the sphere storage bin into the boring, granular discharge from the side reflector boring into the feeder, particle entrainment in the feeder, sphere conveying in the transport pipe, and gas-solid separation in the storage bin. We give a brief summary of the experimental and discrete element simulation work done recently at the Institute of Nuclear and New Energy Technology of Tsinghua University, mainly from the viewpoint of gas-solid flow and granular flow. CFD-DEM coupling simulation is recently conducted to investigate the coarse particle conveying in the small absorber sphere system. We present some CFD-DEM simulation results of coarse particle conveying in ambient air and high-pressure helium gas. Based on the needs of engineering practice and scientific research, some research requirements are suggested. Further work is still needed, to make a comprehensive understanding of the conveying process, and to optimize the design and operation of the conveying system.
| Original language | English |
|---|---|
| Article number | 110420 |
| Number of pages | 14 |
| Journal | Nuclear Engineering and Design |
| Volume | 357 |
| DOIs | |
| Publication status | Published - 1 Feb 2020 |
Keywords
- CFD-DEM simulation
- Dense-phase pneumatic conveying
- Granular flow
- Granular materials
- Particle attrition
- Plug flow
Projects
- 1 Finished
-
ARC Research Hub for Computational Particle Technology
Yu, A. (Primary Chief Investigator (PCI)), Zhao, D. (Chief Investigator (CI)), Rudman, M. (Chief Investigator (CI)), Jiang, X. (Chief Investigator (CI)), Selomulya, C. (Chief Investigator (CI)), Zou, R. (Chief Investigator (CI)), Yan, W. (Chief Investigator (CI)), Zhou, Z. (Chief Investigator (CI)), Guo, B. (Chief Investigator (CI)), Shen, Y. (Chief Investigator (CI)), Kuang, S. (Primary Chief Investigator (PCI)), Chu, K. (Chief Investigator (CI)), Yang, R. (Chief Investigator (CI)), Zhu, H. (Chief Investigator (CI)), Zeng, Q. (Chief Investigator (CI)), Dong, K. (Chief Investigator (CI)), Strezov, V. (Chief Investigator (CI)), Wang, G. (Chief Investigator (CI)), Zhao, B. (Chief Investigator (CI)), Song, S. (Partner Investigator (PI)), Evans, T. (Partner Investigator (PI)), Mao, X. (Partner Investigator (PI)), Zhu, J. (Partner Investigator (PI)), Hu, D. (Partner Investigator (PI)), Pan, R. (Partner Investigator (PI)), Li, J. (Partner Investigator (PI)), Williams, S. R. O. (Partner Investigator (PI)), Luding, S. (Partner Investigator (PI)), Liu, Q. (Partner Investigator (PI)), Zhang, J. (Chief Investigator (CI)), Huang, H. (Chief Investigator (CI)), Jiang, Y. (Chief Investigator (CI)), Qiu, T. (Partner Investigator (PI)), Hapgood, K. (Chief Investigator (CI)) & Chen, W. (Partner Investigator (PI))
ARC - Australian Research Council, Jiangxi University of Science and Technology, Jiangsu Industrial Technology Research Institute, Fujian Longking Co Ltd, Baosteel Group Corporation, Hamersley Iron Pty Limited, Monash University, University of New South Wales (UNSW), University of Queensland , Western Sydney University (WSU), Macquarie University
31/12/16 → 30/12/21
Project: Research