TY - JOUR
T1 - Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung
AU - McQualter, Jonathan Luke
AU - Yuen, Karen
AU - Williams, Brenda
AU - Bertoncello, Ivan
PY - 2010
Y1 - 2010
N2 - The role of lung epithelial stem cells in maintenance and repair of the adult lung is ill-defined, and their identity remains contentious because of the lack of definitive markers for their prospective isolation and the absence of clonogenic assays able to measure their stem/progenitor cell potential. In this study, we show that replication of epithelial-mesenchymal interactions in a previously undescribed matrigel-based clonogenic assay enables the identification of lung epithelial stem/progenitor cells by their colony-forming potential in vitro. We describe a population of EpCAM(hi) CD49f(pos) CD104(pos) CD24(low) epithelial cfus that generate colonies comprising airway, alveolar, or mixed lung epithelial cell lineages when cocultured with EpCAM(neg) Sca-1(pos) lung mesenchymal cells. We show that soluble fibroblast growth factor-10 and hepatocyte growth factor partially replace the requirement for mesenchymal support of epithelial colony formation, allowing clonal passaging and demonstration of their capacity for self-renewal. These data support a model in which the adult mouse lung contains a minor population of multipotent epithelial stem/progenitor cells with the capacity for self-renewal and whose descendants give rise to airway and alveolar epithelial cell lineages in vitro.
AB - The role of lung epithelial stem cells in maintenance and repair of the adult lung is ill-defined, and their identity remains contentious because of the lack of definitive markers for their prospective isolation and the absence of clonogenic assays able to measure their stem/progenitor cell potential. In this study, we show that replication of epithelial-mesenchymal interactions in a previously undescribed matrigel-based clonogenic assay enables the identification of lung epithelial stem/progenitor cells by their colony-forming potential in vitro. We describe a population of EpCAM(hi) CD49f(pos) CD104(pos) CD24(low) epithelial cfus that generate colonies comprising airway, alveolar, or mixed lung epithelial cell lineages when cocultured with EpCAM(neg) Sca-1(pos) lung mesenchymal cells. We show that soluble fibroblast growth factor-10 and hepatocyte growth factor partially replace the requirement for mesenchymal support of epithelial colony formation, allowing clonal passaging and demonstration of their capacity for self-renewal. These data support a model in which the adult mouse lung contains a minor population of multipotent epithelial stem/progenitor cells with the capacity for self-renewal and whose descendants give rise to airway and alveolar epithelial cell lineages in vitro.
UR - http://www.pnas.org/content/107/4/1414.full.pdf+html
U2 - 10.1073/pnas.0909207107
DO - 10.1073/pnas.0909207107
M3 - Article
VL - 107
SP - 1414
EP - 1419
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
SN - 0027-8424
IS - 4
ER -