TY - JOUR
T1 - Evidence for microRNA-mediated regulation in rheumatic diseases
AU - Luo, X
AU - Tsai, Louis
AU - Shen, N
AU - Yu, Di
PY - 2010
Y1 - 2010
N2 - MicroRNA (miRNA), a group of short non-coding RNA of approximately 20-22 nucleotides modulating the stability and translational efficiency of target messenger RNA, present an important new layer controlling gene expression. Hundreds to a thousand miRNA have been identified and are predicted to regulate at least one-third of protein-coding transcripts in the mammalian genome. This study reviews the recent advances reinforcing the awareness that miRNA are key players in rheumatic diseases by regulating major pathogenic molecules, such as tumour necrosis factor, central signal pathways, such as type I interferon pathway and critical immunoregulatory cells, such as regulatory T cells. In animals, blockade of miRNA maturation by the deletion of Dicer or Drasha, interference with miRNA function by the mutation of Roquin and the altered expression of individual miRNA (miR-146a) or miRNA cluster (miR-17-92) all lead to the development of autoimmune diseases. Growing evidence also reveals the differential expression of certain immunity-regulating miRNA in rheumatoid patients. The features of miRNA-mediated regulation, the direction of future miRNA study in rheumatic diseases and the application of miRNA in diagnosis, therapy and prognosis will also be briefly discussed.
AB - MicroRNA (miRNA), a group of short non-coding RNA of approximately 20-22 nucleotides modulating the stability and translational efficiency of target messenger RNA, present an important new layer controlling gene expression. Hundreds to a thousand miRNA have been identified and are predicted to regulate at least one-third of protein-coding transcripts in the mammalian genome. This study reviews the recent advances reinforcing the awareness that miRNA are key players in rheumatic diseases by regulating major pathogenic molecules, such as tumour necrosis factor, central signal pathways, such as type I interferon pathway and critical immunoregulatory cells, such as regulatory T cells. In animals, blockade of miRNA maturation by the deletion of Dicer or Drasha, interference with miRNA function by the mutation of Roquin and the altered expression of individual miRNA (miR-146a) or miRNA cluster (miR-17-92) all lead to the development of autoimmune diseases. Growing evidence also reveals the differential expression of certain immunity-regulating miRNA in rheumatoid patients. The features of miRNA-mediated regulation, the direction of future miRNA study in rheumatic diseases and the application of miRNA in diagnosis, therapy and prognosis will also be briefly discussed.
UR - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19995741
U2 - 10.1136/ard.2009.117218
DO - 10.1136/ard.2009.117218
M3 - Article
SN - 0003-4967
VL - 69
SP - i30 - i36
JO - Annals of the Rheumatic Diseases
JF - Annals of the Rheumatic Diseases
IS - Suppl 1
ER -