Evidence for hybridisation in the Tynong Province granitoids, Lachlan Fold Belt, eastern Australia

Kamal Raj Regmi, Roberto Ferrez Weinberg, Ian Angus Nicholls, Roland Maas, Massimo Raveggi

Research output: Contribution to journalArticleResearchpeer-review

15 Citations (Scopus)


The role of mafic–felsic magma mixing in the formation of granites is controversial. Field evidence in many granite plutons undoubtedly implies interaction of mafic (basaltic–intermediate) magma with (usually) much more abundant granitic magma, but the extent of such mixing and its effect on overall chemical features of the host intrusion are unclear. Late Devonian I-type granitoids of the Tynong Province in the western Lachlan Fold Belt, southeast Australia, show typical evidence for magma mingling and mixing, such as small dioritic stocks, hybrid zones with local host granite and ubiquitous microgranitoid enclaves. The latter commonly have irregular boundaries and show textural features characteristic of hybridisation, e.g. xenocrysts of granitic quartz and K-feldspars, rapakivi and antirapakivi textures, quartz and feldspar ocelli, and acicular apatite. Linear (well defined to diffuse) compositional trends for granites, hybrid zones and enclaves have been attributed to magma mixing but could also be explained by other mechanisms. Magmatic zircons of the Tynong and Toorongo granodiorites yield U–Pb zircon ages consistent with the known ca 370 Ma age of the province and preserve relatively unevolved ϵHf (averages for three samples are +6.9, +4.3 and +3.9). The range in zircon ϵHf in two of the three analysed samples (8.8 and 10.1 ϵHf units) exceeds that expected from a single homogeneous population (∼4 units) and suggests considerable Hf isotopic heterogeneity in the melt from which the zircon formed, consistent with syn-intrusion magma mixing. Correlated whole-rock Sr–Nd isotope data for the Tynong Province granitoids show a considerable range (0.7049–0.7074, ϵNd +1.2 to –4.7), which may map the hybridisation between a mafic magma and possibly multiple crustal magmas. Major-element variations for host granite, hybrid zones and enclaves in the large Tynong granodiorite show correlations with major-element compositions of the type expected from mixing of contrasting mafic and felsic magmas. However, chemical–isotopic correlations are poorly developed for the province as a whole, especially for 87Sr/86Sr. In a magma mixing model, such complexities could be explained in terms of a dynamic mixing/mingling environment, with multiple mixing events and subsequent interactions between hybrids and superimposed fractional crystallisation. The results indicate that features plausibly attributed to mafic–felsic magma mixing exist at all scales within this granite province and suggest a major role for magma mixing/mingling in the formation of I-type granites.
Original languageEnglish
Pages (from-to)235-255
Number of pages21
JournalAustralian Journal of Earth Sciences
Issue number3
Publication statusPublished - 7 Jul 2016


  • magma mixing
  • hybridisation
  • Hf isotopes
  • zircon
  • Tynong Province
  • Lachlan Orogen

Cite this