Abstract
A consistent feature of the Alpha-, Mu- and Pi-class glutathione transferases (GSTs) is the presence near the N-terminus of a tyrosine residue that contributes to the activation of glutathione. While this residue appears to be conserved in many Theta-class GSTs, its absence in some suggested that the Theta-class GSTs may have a significantly different structure or catalytic mechanism. The elucidation of the crystal structure of the Theta-class GST from the Australian sheep blowfly, Lucilia cuprina, has indicated that a serine residue rather than a tyrosine residue can form a hydrogen bond with the glutathionyl sulphur atom. The present studies show that mutation of Ser-9 to alanine substantially inactivates the L. cuprina GST, confirming its importance in the reaction mechanism. As this serine is conserved in all Theta-class enzymes reported so far, it seems that an active-site serine is a significant factor that distinguishes the Theta-class GSTs from members of the Alpha-, Mu- and Pi-class isoenzymes.
Original language | English |
---|---|
Pages (from-to) | 247-250 |
Number of pages | 4 |
Journal | Biochemical Journal |
Volume | 311 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jan 1995 |
Externally published | Yes |