Evaluating himawari-8 cloud products using shipborne and CALIPSO observations: Cloud-top height and cloud-top temperature

Y. I. Huang, Steven Siems, Michael Manton, Alain Protat, Leon Majewski, Hanh Nguyen

Research output: Contribution to journalArticleResearchpeer-review

7 Citations (Scopus)

Abstract

Cloud-top height (CTH) and cloud-top temperature (CTT) retrieved from the Himawari-8 observations are evaluated using the active shipborne radar–lidar observations derived from the 31-day Clouds, Aerosols, Precipitation Radiation and Atmospheric Composition over the Southern Ocean (CAPRICORN) experiment in 2016 and 1-yr observations from the spaceborne Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) cloud product over a large sector of the Southern Ocean. The results show that the Himawari-8 CTH (CTT) retrievals agree reasonably well with both the shipborne estimates, with a correlation coefficient of 0.837 (0.820), a mean bias error of 0.226 km (-2.5268C), and an RMSE of 1.684 km (10.0698C). In the comparison with CALIOP, the corresponding quantities are found to be 0.786 (0.480),-0.570 km (1.3438C), and 2.297 km (25.1768C). The Himawari-8 CTH (CTT) generally falls between the physical CTHs observed by CALIOP and the shipborne radar–lidar estimates. However, major systematic biases are also identified. These errors include (i) a low (warm) bias in CTH (CTT) for warm liquid cloud type, (ii) a cold bias in CTT for supercooled liquid water cloud type, (iii) a lack of CTH at ~3 km that does not have a corresponding gap in CTT, (iv) a tendency of misclassifying some low-/mid-top clouds as cirrus and overlap cloud types, and (v) a saturation of CTH (CTT) around 10 km (-408C), particularly for cirrus and overlap cloud types. Various challenges that underpin these biases are also explored, including the potential of parallax bias, low-level inversion, and cloud heterogeneity.

Original languageEnglish
Pages (from-to)2327-2347
Number of pages21
JournalJournal of Atmospheric and Oceanic Technology
Volume36
Issue number12
DOIs
Publication statusPublished - 2 Dec 2019

Cite this