Estimating retention potential of headwater catchment using Tritium time series

Harald Hofmann, Ian Cartwright, Uwe Morgenstern

Research output: Contribution to journalArticleResearchpeer-review

5 Citations (Scopus)

Abstract

Headwater catchments provide substantial streamflow to rivers even during long periods of drought. Documenting the mean transit times (MTT) of stream water in headwater catchments and therefore the retention capacities of these catchments is crucial for water management. This study uses time series of 3H activities in combination with major ion concentrations, stable isotope ratios and radon activities (222Rn) in the Lyrebird Creek catchment in Victoria, Australia to provide a unique insight into the mean transit time distributions and flow systems of this small temperate headwater catchment. At all streamflows, the stream has 3H activities (<2.4 TU) that are significantly below those of rainfall (∼3.2 TU), implying that most of the water in the stream is derived from stores with long transit times. If the water in the catchment can be represented by a single store with a continuum of ages, mean transit times of the stream water range from ∼6 up to 40 years, which indicates the large retention potential for this catchment. Alternatively, variations of 3H activities, stable isotopes and major ions can be explained by mixing between of young recent recharge and older water stored in the catchment. While surface runoff is negligible, the variation in stable isotope ratios, major ion concentrations and radon activities during most of the year is minimal (±12%) and only occurs during major storm events. This suggests that different subsurface water stores are activated during the storm events and that these cease to provide water to the stream within a few days or weeks after storm events. The stores comprise micro and macropore flow in the soils and saprolite as well as the boundary between the saprolite and the fractured bed rock. Hydrograph separations from three major storm events using Tritium, electrical conductivity and selected major ions as well a δ18O suggest a minimum of 50% baseflow at most flow conditions. We demonstrate that headwater catchments can have a significant storage capacity and that the relationship between long-water stores and fast storm event subsurface flow is complex. The study also illustrates that using 3H to determine mean transit times is probably only valid for baseflow conditions where the catchment can be represented as a single store. The results of this study reinforce the need to protect headwater catchments from contamination and extreme land use changes.

Original languageEnglish
Pages (from-to)557-572
Number of pages16
JournalJournal of Hydrology
Volume561
DOIs
Publication statusPublished - 1 Jun 2018

Keywords

  • Headwater catchment
  • Hydrograph separation
  • Mean transit times
  • Tritium time series

Cite this

@article{54444c9fee7544eaa748e4d6e5d383a0,
title = "Estimating retention potential of headwater catchment using Tritium time series",
abstract = "Headwater catchments provide substantial streamflow to rivers even during long periods of drought. Documenting the mean transit times (MTT) of stream water in headwater catchments and therefore the retention capacities of these catchments is crucial for water management. This study uses time series of 3H activities in combination with major ion concentrations, stable isotope ratios and radon activities (222Rn) in the Lyrebird Creek catchment in Victoria, Australia to provide a unique insight into the mean transit time distributions and flow systems of this small temperate headwater catchment. At all streamflows, the stream has 3H activities (<2.4 TU) that are significantly below those of rainfall (∼3.2 TU), implying that most of the water in the stream is derived from stores with long transit times. If the water in the catchment can be represented by a single store with a continuum of ages, mean transit times of the stream water range from ∼6 up to 40 years, which indicates the large retention potential for this catchment. Alternatively, variations of 3H activities, stable isotopes and major ions can be explained by mixing between of young recent recharge and older water stored in the catchment. While surface runoff is negligible, the variation in stable isotope ratios, major ion concentrations and radon activities during most of the year is minimal (±12{\%}) and only occurs during major storm events. This suggests that different subsurface water stores are activated during the storm events and that these cease to provide water to the stream within a few days or weeks after storm events. The stores comprise micro and macropore flow in the soils and saprolite as well as the boundary between the saprolite and the fractured bed rock. Hydrograph separations from three major storm events using Tritium, electrical conductivity and selected major ions as well a δ18O suggest a minimum of 50{\%} baseflow at most flow conditions. We demonstrate that headwater catchments can have a significant storage capacity and that the relationship between long-water stores and fast storm event subsurface flow is complex. The study also illustrates that using 3H to determine mean transit times is probably only valid for baseflow conditions where the catchment can be represented as a single store. The results of this study reinforce the need to protect headwater catchments from contamination and extreme land use changes.",
keywords = "Headwater catchment, Hydrograph separation, Mean transit times, Tritium time series",
author = "Harald Hofmann and Ian Cartwright and Uwe Morgenstern",
year = "2018",
month = "6",
day = "1",
doi = "10.1016/j.jhydrol.2018.04.030",
language = "English",
volume = "561",
pages = "557--572",
journal = "Journal of Hydrology",
issn = "0022-1694",
publisher = "Elsevier",

}

Estimating retention potential of headwater catchment using Tritium time series. / Hofmann, Harald; Cartwright, Ian; Morgenstern, Uwe.

In: Journal of Hydrology, Vol. 561, 01.06.2018, p. 557-572.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Estimating retention potential of headwater catchment using Tritium time series

AU - Hofmann, Harald

AU - Cartwright, Ian

AU - Morgenstern, Uwe

PY - 2018/6/1

Y1 - 2018/6/1

N2 - Headwater catchments provide substantial streamflow to rivers even during long periods of drought. Documenting the mean transit times (MTT) of stream water in headwater catchments and therefore the retention capacities of these catchments is crucial for water management. This study uses time series of 3H activities in combination with major ion concentrations, stable isotope ratios and radon activities (222Rn) in the Lyrebird Creek catchment in Victoria, Australia to provide a unique insight into the mean transit time distributions and flow systems of this small temperate headwater catchment. At all streamflows, the stream has 3H activities (<2.4 TU) that are significantly below those of rainfall (∼3.2 TU), implying that most of the water in the stream is derived from stores with long transit times. If the water in the catchment can be represented by a single store with a continuum of ages, mean transit times of the stream water range from ∼6 up to 40 years, which indicates the large retention potential for this catchment. Alternatively, variations of 3H activities, stable isotopes and major ions can be explained by mixing between of young recent recharge and older water stored in the catchment. While surface runoff is negligible, the variation in stable isotope ratios, major ion concentrations and radon activities during most of the year is minimal (±12%) and only occurs during major storm events. This suggests that different subsurface water stores are activated during the storm events and that these cease to provide water to the stream within a few days or weeks after storm events. The stores comprise micro and macropore flow in the soils and saprolite as well as the boundary between the saprolite and the fractured bed rock. Hydrograph separations from three major storm events using Tritium, electrical conductivity and selected major ions as well a δ18O suggest a minimum of 50% baseflow at most flow conditions. We demonstrate that headwater catchments can have a significant storage capacity and that the relationship between long-water stores and fast storm event subsurface flow is complex. The study also illustrates that using 3H to determine mean transit times is probably only valid for baseflow conditions where the catchment can be represented as a single store. The results of this study reinforce the need to protect headwater catchments from contamination and extreme land use changes.

AB - Headwater catchments provide substantial streamflow to rivers even during long periods of drought. Documenting the mean transit times (MTT) of stream water in headwater catchments and therefore the retention capacities of these catchments is crucial for water management. This study uses time series of 3H activities in combination with major ion concentrations, stable isotope ratios and radon activities (222Rn) in the Lyrebird Creek catchment in Victoria, Australia to provide a unique insight into the mean transit time distributions and flow systems of this small temperate headwater catchment. At all streamflows, the stream has 3H activities (<2.4 TU) that are significantly below those of rainfall (∼3.2 TU), implying that most of the water in the stream is derived from stores with long transit times. If the water in the catchment can be represented by a single store with a continuum of ages, mean transit times of the stream water range from ∼6 up to 40 years, which indicates the large retention potential for this catchment. Alternatively, variations of 3H activities, stable isotopes and major ions can be explained by mixing between of young recent recharge and older water stored in the catchment. While surface runoff is negligible, the variation in stable isotope ratios, major ion concentrations and radon activities during most of the year is minimal (±12%) and only occurs during major storm events. This suggests that different subsurface water stores are activated during the storm events and that these cease to provide water to the stream within a few days or weeks after storm events. The stores comprise micro and macropore flow in the soils and saprolite as well as the boundary between the saprolite and the fractured bed rock. Hydrograph separations from three major storm events using Tritium, electrical conductivity and selected major ions as well a δ18O suggest a minimum of 50% baseflow at most flow conditions. We demonstrate that headwater catchments can have a significant storage capacity and that the relationship between long-water stores and fast storm event subsurface flow is complex. The study also illustrates that using 3H to determine mean transit times is probably only valid for baseflow conditions where the catchment can be represented as a single store. The results of this study reinforce the need to protect headwater catchments from contamination and extreme land use changes.

KW - Headwater catchment

KW - Hydrograph separation

KW - Mean transit times

KW - Tritium time series

UR - http://www.scopus.com/inward/record.url?scp=85045479139&partnerID=8YFLogxK

U2 - 10.1016/j.jhydrol.2018.04.030

DO - 10.1016/j.jhydrol.2018.04.030

M3 - Article

AN - SCOPUS:85045479139

VL - 561

SP - 557

EP - 572

JO - Journal of Hydrology

JF - Journal of Hydrology

SN - 0022-1694

ER -