Erythropoietin improves motor and cognitive deficit, axonal pathology, and neuroinflammation in a combined model of diffuse traumatic brain injury and hypoxia, in association with upregulation of the erythropoietin receptor

Sarah Hellewell, Edwin Bingbing Yan, Duwage Dasuni Sathsara Alwis, Nicole Bye, Maria Cristina Morganti-Kossmann

Research output: Contribution to journalArticleResearchpeer-review

40 Citations (Scopus)

Abstract

Diffuse axonal injury is a common consequence of traumatic brain injury (TBI) and often co-occurs with hypoxia, resulting in poor neurological outcome for which there is no current therapy. Here, we investigate the ability of the multifunctional compound erythropoietin (EPO) to provide neuroprotection when administered to rats after diffuse TBI alone or with post-traumatic hypoxia. Methods: Sprague-Dawley rats were subjected to diffuse traumatic axonal injury (TAI) followed by 30 minutes of hypoxic (Hx, 12 O2) or normoxic ventilation, and were administered recombinant human EPO-alpha (5000 IU/kg) or saline at 1 and 24 hours post-injury. The parameters examined included: 1) behavioural and cognitive deficit using the Rotarod, open field and novel object recognition tests; 2) axonal pathology (NF-200); 3) callosal degradation (hematoxylin and eosin stain); 3) dendritic loss (MAP2); 4) expression and localisation of the EPO receptor (EpoR); 5) activation/infiltration of microglia/macrophages (CD68) and production of IL-1beta. Results: EPO significantly improved sensorimotor and cognitive recovery when administered to TAI rats with hypoxia (TAI + Hx). A single dose of EPO at 1 hour reduced axonal damage in the white matter of TAI + Hx rats at 1 day by 60 compared to vehicle. MAP2 was decreased in the lateral septal nucleus of TAI + Hx rats; however, EPO prevented this loss, and maintained MAP2 density over time. EPO administration elicited an early enhanced expression of EpoR 1 day after TAI + Hx compared with a 7-day peak in vehicle controls. Furthermore, EPO reduced IL-1beta to sham levels 2 hours after TAI + Hx, concomitant to a decrease in CD68 positive cells at 7 and 14 days. Conclusions: When administered EPO, TAI + Hx rats had improved behavioural and cognitive performance, attenuated white matter damage, resolution of neuronal damage spanning from the axon to the dendrite, and suppressed neuroinflammation, alongside enhanced expression of EpoR. The
Original languageEnglish
Pages (from-to)1 - 21
Number of pages21
JournalJournal of Neuroinflammation
Volume10
Issue numberArt. ID: 156
DOIs
Publication statusPublished - 2013

Cite this

@article{1c917fbde9f34032b6502a5773758a83,
title = "Erythropoietin improves motor and cognitive deficit, axonal pathology, and neuroinflammation in a combined model of diffuse traumatic brain injury and hypoxia, in association with upregulation of the erythropoietin receptor",
abstract = "Diffuse axonal injury is a common consequence of traumatic brain injury (TBI) and often co-occurs with hypoxia, resulting in poor neurological outcome for which there is no current therapy. Here, we investigate the ability of the multifunctional compound erythropoietin (EPO) to provide neuroprotection when administered to rats after diffuse TBI alone or with post-traumatic hypoxia. Methods: Sprague-Dawley rats were subjected to diffuse traumatic axonal injury (TAI) followed by 30 minutes of hypoxic (Hx, 12 O2) or normoxic ventilation, and were administered recombinant human EPO-alpha (5000 IU/kg) or saline at 1 and 24 hours post-injury. The parameters examined included: 1) behavioural and cognitive deficit using the Rotarod, open field and novel object recognition tests; 2) axonal pathology (NF-200); 3) callosal degradation (hematoxylin and eosin stain); 3) dendritic loss (MAP2); 4) expression and localisation of the EPO receptor (EpoR); 5) activation/infiltration of microglia/macrophages (CD68) and production of IL-1beta. Results: EPO significantly improved sensorimotor and cognitive recovery when administered to TAI rats with hypoxia (TAI + Hx). A single dose of EPO at 1 hour reduced axonal damage in the white matter of TAI + Hx rats at 1 day by 60 compared to vehicle. MAP2 was decreased in the lateral septal nucleus of TAI + Hx rats; however, EPO prevented this loss, and maintained MAP2 density over time. EPO administration elicited an early enhanced expression of EpoR 1 day after TAI + Hx compared with a 7-day peak in vehicle controls. Furthermore, EPO reduced IL-1beta to sham levels 2 hours after TAI + Hx, concomitant to a decrease in CD68 positive cells at 7 and 14 days. Conclusions: When administered EPO, TAI + Hx rats had improved behavioural and cognitive performance, attenuated white matter damage, resolution of neuronal damage spanning from the axon to the dendrite, and suppressed neuroinflammation, alongside enhanced expression of EpoR. The",
author = "Sarah Hellewell and Yan, {Edwin Bingbing} and Alwis, {Duwage Dasuni Sathsara} and Nicole Bye and Morganti-Kossmann, {Maria Cristina}",
year = "2013",
doi = "10.1186/1742-2094-10-156",
language = "English",
volume = "10",
pages = "1 -- 21",
journal = "Journal of Neuroinflammation",
issn = "1742-2094",
publisher = "Springer-Verlag London Ltd.",
number = "Art. ID: 156",

}

TY - JOUR

T1 - Erythropoietin improves motor and cognitive deficit, axonal pathology, and neuroinflammation in a combined model of diffuse traumatic brain injury and hypoxia, in association with upregulation of the erythropoietin receptor

AU - Hellewell, Sarah

AU - Yan, Edwin Bingbing

AU - Alwis, Duwage Dasuni Sathsara

AU - Bye, Nicole

AU - Morganti-Kossmann, Maria Cristina

PY - 2013

Y1 - 2013

N2 - Diffuse axonal injury is a common consequence of traumatic brain injury (TBI) and often co-occurs with hypoxia, resulting in poor neurological outcome for which there is no current therapy. Here, we investigate the ability of the multifunctional compound erythropoietin (EPO) to provide neuroprotection when administered to rats after diffuse TBI alone or with post-traumatic hypoxia. Methods: Sprague-Dawley rats were subjected to diffuse traumatic axonal injury (TAI) followed by 30 minutes of hypoxic (Hx, 12 O2) or normoxic ventilation, and were administered recombinant human EPO-alpha (5000 IU/kg) or saline at 1 and 24 hours post-injury. The parameters examined included: 1) behavioural and cognitive deficit using the Rotarod, open field and novel object recognition tests; 2) axonal pathology (NF-200); 3) callosal degradation (hematoxylin and eosin stain); 3) dendritic loss (MAP2); 4) expression and localisation of the EPO receptor (EpoR); 5) activation/infiltration of microglia/macrophages (CD68) and production of IL-1beta. Results: EPO significantly improved sensorimotor and cognitive recovery when administered to TAI rats with hypoxia (TAI + Hx). A single dose of EPO at 1 hour reduced axonal damage in the white matter of TAI + Hx rats at 1 day by 60 compared to vehicle. MAP2 was decreased in the lateral septal nucleus of TAI + Hx rats; however, EPO prevented this loss, and maintained MAP2 density over time. EPO administration elicited an early enhanced expression of EpoR 1 day after TAI + Hx compared with a 7-day peak in vehicle controls. Furthermore, EPO reduced IL-1beta to sham levels 2 hours after TAI + Hx, concomitant to a decrease in CD68 positive cells at 7 and 14 days. Conclusions: When administered EPO, TAI + Hx rats had improved behavioural and cognitive performance, attenuated white matter damage, resolution of neuronal damage spanning from the axon to the dendrite, and suppressed neuroinflammation, alongside enhanced expression of EpoR. The

AB - Diffuse axonal injury is a common consequence of traumatic brain injury (TBI) and often co-occurs with hypoxia, resulting in poor neurological outcome for which there is no current therapy. Here, we investigate the ability of the multifunctional compound erythropoietin (EPO) to provide neuroprotection when administered to rats after diffuse TBI alone or with post-traumatic hypoxia. Methods: Sprague-Dawley rats were subjected to diffuse traumatic axonal injury (TAI) followed by 30 minutes of hypoxic (Hx, 12 O2) or normoxic ventilation, and were administered recombinant human EPO-alpha (5000 IU/kg) or saline at 1 and 24 hours post-injury. The parameters examined included: 1) behavioural and cognitive deficit using the Rotarod, open field and novel object recognition tests; 2) axonal pathology (NF-200); 3) callosal degradation (hematoxylin and eosin stain); 3) dendritic loss (MAP2); 4) expression and localisation of the EPO receptor (EpoR); 5) activation/infiltration of microglia/macrophages (CD68) and production of IL-1beta. Results: EPO significantly improved sensorimotor and cognitive recovery when administered to TAI rats with hypoxia (TAI + Hx). A single dose of EPO at 1 hour reduced axonal damage in the white matter of TAI + Hx rats at 1 day by 60 compared to vehicle. MAP2 was decreased in the lateral septal nucleus of TAI + Hx rats; however, EPO prevented this loss, and maintained MAP2 density over time. EPO administration elicited an early enhanced expression of EpoR 1 day after TAI + Hx compared with a 7-day peak in vehicle controls. Furthermore, EPO reduced IL-1beta to sham levels 2 hours after TAI + Hx, concomitant to a decrease in CD68 positive cells at 7 and 14 days. Conclusions: When administered EPO, TAI + Hx rats had improved behavioural and cognitive performance, attenuated white matter damage, resolution of neuronal damage spanning from the axon to the dendrite, and suppressed neuroinflammation, alongside enhanced expression of EpoR. The

UR - http://www.jneuroinflammation.com/content/pdf/1742-2094-10-156.pdf

U2 - 10.1186/1742-2094-10-156

DO - 10.1186/1742-2094-10-156

M3 - Article

VL - 10

SP - 1

EP - 21

JO - Journal of Neuroinflammation

JF - Journal of Neuroinflammation

SN - 1742-2094

IS - Art. ID: 156

ER -