Epistemic network analysis for end-users: Closing the loop in the context of multimodal analytics for collaborative team learning

Linxuan Zhao, Vanessa Echeverria, Zachari Swiecki, Lixiang Yan, Riordan Alfredo, Xinyu Li, Dragan Gasevic, Roberto Martinez-Maldonado

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

11 Citations (Scopus)

Abstract

Effective collaboration and team communication are critical across many sectors. However, the complex dynamics of collaboration in physical learning spaces, with overlapping dialogue segments and varying participant interactions, pose assessment challenges for educators and self-reflection difficulties for students. Epistemic network analysis (ENA) is a relatively novel technique that has been used in learning analytics (LA) to unpack salient aspects of group communication. Yet, most LA works based on ENA have primarily sought to advance research knowledge rather than directly aid teachers and students by closing the LA loop. We address this gap by conducting a study in which we i) engaged teachers in designing human-centred versions of epistemic networks; ii) formulated an NLP methodology to code physically distributed dialogue segments of students based on multimodal (audio and positioning) data, enabling automatic generation of epistemic networks; and iii) deployed the automatically generated epistemic networks in 28 authentic learning sessions and investigated how they can support teaching. The results indicate the viability of completing the analytics loop through the design of streamlined epistemic network representations that enable teachers to support students' reflections.

Original languageEnglish
Title of host publicationLAK 2024 Conference Proceedings - The Fourteenth International Conference on Learning Analytics & Knowledge
EditorsSrecko Joksimovic, Andrew Zamecnik
Place of PublicationNew York NY USA
PublisherAssociation for Computing Machinery (ACM)
Pages90-100
Number of pages11
ISBN (Electronic)9798400716188
DOIs
Publication statusPublished - 2024
EventInternational Learning Analytics & Knowledge Conference 2024 - Kyoto, Japan
Duration: 18 Mar 202422 Mar 2024
Conference number: 14th
https://dl.acm.org/doi/proceedings/10.1145/3636555 (Conference Proceedings)
https://www.solaresearch.org/events/lak/lak24/
https://ceur-ws.org/Vol-3667/ (LAK 2024 Workshop Proceedings)

Conference

ConferenceInternational Learning Analytics & Knowledge Conference 2024
Abbreviated titleLAK 2024
Country/TerritoryJapan
CityKyoto
Period18/03/2422/03/24
Internet address

Keywords

  • Collaborative learning
  • Human-centred
  • Learning Analytics
  • Multimodality
  • Teamwork

Cite this