Enhancing Graphene Protective Coatings by Hydrogen Induced Chemical Bond Formation

Line Kyhl, Richard Balog, Andrew Cassidy, Jakob Jørgensen, Antonija Grubišić Čabo, Lena Trotochaud, Hendrik Bluhm, Liv Hornekaer

Research output: Contribution to journalArticleResearchpeer-review


Increased interactions at the graphene-metal interface are here demonstrated to yield an effective prevention of intercalation of foreign species below the graphene cover. Hereby, an engineering pathway for increasing the usability of graphene as a metal coating is demonstrated. Graphene on Ir(111) is used as a model system, as it has previously been well established, that an increased interaction and formation of chemical bonds at the graphene-Ir interface can be induced by hydrogen functionalization of the graphene from its top-side. Using X-ray Photoelectron Spectroscopy (XPS) it is shown, that hydrogen-induced increased interactions at the Gr/Ir(111) interface, effectively prevents intercalation of CO in the mbar range. The scheme leads to protection against at least 10 times higher pressure and 70 times higher fluences of CO, compared to the protection offered by pristine Gr/Ir(111).
Original languageEnglish
Pages (from-to)4509−4515
Number of pages17
JournalACS Applied Nano Materials
Issue number9
Publication statusPublished - 2018
Externally publishedYes


  • Graphene
  • Coatings
  • intercalation
  • interface
  • XPS

Cite this