Enhancement of the hole conducting effect of NiO by a N2 blow drying method in printable perovskite solar cells with low-temperature carbon as the counter electrode

T. A. Nirmal Peiris, Ajay K. Baranwal, Hiroyuki Kanda, Shota Fukumoto, Shusaku Kanaya, Ludmila Cojocaru, Takeru Bessho, Tsutomu Miyasaka, Hiroshi Segawa, Seigo Ito

Research output: Contribution to journalArticleResearchpeer-review

27 Citations (Scopus)


In this article, we demonstrate for the first time a mesoscopic printable perovskite solar cell (PSC) using NiO as the hole transporting material and low-temperature processed carbon as the counter electrode. A single deposition method assisted by N2 blow drying was used for the deposition of MAPbI3 on a TiO2/ZrO2/NiO screen-printed electrode. As the final step a low-temperature processing (i.e. 75 °C) carbon counter layer was fabricated on MAPbI3 by a blade coating method. It is found that the capping layer thickness of MAPbI3 has a significant effect on the device efficiency, especially when NiO is introduced as a hole transporting material into the structure. Electrochemical impedance spectroscopy demonstrates good charge transport characteristics for the device with a thin MAPbI3 capping layer obtained by the N2 blow drying method. Our best performing device demonstrated a remarkable photovoltaic performance with a short-circuit current density (Jsc) of 22.38 mA cm-2, an open circuit voltage (Voc) of 0.97 V, and a fill factor (FF) of 0.50 corresponding to a photo-conversion efficiency (PCE) of 10.83%. Moreover, the un-encapsulated device exhibited advantageous stability over 1000 h in air in the dark.

Original languageEnglish
Pages (from-to)5475-5482
Number of pages8
Issue number17
Publication statusPublished - 1 Jan 2017
Externally publishedYes

Cite this