Abstract
Enhanced spin capturing polymerization (ESCP) - a recent and versatile technique in the field of controlled radical polymerization - achieves control over molecular weights and the synthesis of complex copolymer structures for a wide range of monomers. In the present work, the use of ESCP was extended to the radical polymerization of ethylene under mild conditions (low temperature and medium ethylene pressure) using a nitrone as spin trapping agent. It was demonstrated that the evolution of polyethylene (PE) molecular weight can be accurately described by classical ESCP kinetic equations. A PE bearing a midchain alkoxyamine function was thus obtained with high selectivity (90%). A more complex structure was produced from the radical polymerization of ethylene in the presence of a midchain alkoxyamine-functionalized polystyrene (PS) synthesized by ESCP in the form of ABA triblock copolymer (where A is polystyrene and B polyethylene).
Original language | English |
---|---|
Pages (from-to) | 29-36 |
Number of pages | 8 |
Journal | Macromolecules |
Volume | 46 |
Issue number | 1 |
DOIs | |
Publication status | Published - 8 Jan 2013 |
Externally published | Yes |