Enhanced acetaminophen hepatotoxicity in transgenic mice overexpressing BCL-2

Michael L Adams, Robert H Pierce, Mary Eliabeth Vail, Collin C White, Robert P Tonge, Terrence J Kavanagh, Nelson Fausto, Sidney D Nelson, Sam A Bruschi

Research output: Contribution to journalArticleResearchpeer-review

83 Citations (Scopus)


Mitochondria play an important role in the cell death induced by many drugs, including hepatotoxicity from overdose of the popular analgesic, acetaminophen (APAP). To investigate mitochondrial alterations associated with APAP-induced hepatotoxicity, the subcellular distribution of proapoptotic BAX was determined. Based on the antiapoptotic characteristics of BCL-2, we further hypothesized that if a BAX component was evident then BCL-2 overexpression may be hepatoprotective. Mice, either with a human bcl-2 transgene (-/+) or wild-type mice (WT; -/-), were dosed with 500 or 600 mg/kg (i.p.) APAP or a nonhepatotoxic isomer, N-acetyl-m-aminophenol (AMAP). Immunoblot analyses indicated increased mitochondrial BAX-beta content very early after APAP or AMAP treatment. This was paralleled by disappearance of BAX-alpha from the cytosol of APAP treated animals and, to a lesser extent, with AMAP treatment. Early pathological evidence of APAP-induced zone 3 necrosis was seen in bcl-2 (-/+) mice, which progressed to massive panlobular necrosis with hemorrhage by 24 h. In contrast, WT mice dosed with APAP showed a more typical, and less severe, centrilobular necrosis. AMAP-treated bcl-2 (-/+) mice displayed only early microvesicular steatosis without progression to extensive necrosis. Decreased complex III activity, evident as early as 6 h after treatment, correlated well with plasma enzyme activities at 24 h (AST r(2) = 0.89, ALT r(2) = 0.87) thereby confirming a role for mitochondria in APAP-mediated hepatotoxicity. In conclusion, these data suggest for the first time that BAX may be an early determinant of APAP-mediated hepatotoxicity and that BCL-2 overexpression unexpectedly enhances APAP hepatotoxicity.
Original languageEnglish
Pages (from-to)907 - 915
Number of pages9
JournalMolecular Pharmacology
Issue number5
Publication statusPublished - 2001

Cite this