Endotoxin-induced maturation of monocytes in preterm fetal sheep lung

Boris Kramer, Shubhada Joshi, Timothy Moss, John Newnham, Richard Sindelar, Alan Jobe, Suhas Kallapur

Research output: Contribution to journalArticleResearchpeer-review

62 Citations (Scopus)

Abstract

The fetal lung normally contains immature monocytes and very few mature macrophages. The chorioamnionitis frequently associated with preterm birth induces monocyte influx into the fetal lung. Previous studies demonstrated that monocytes in the developing lung can mediate lung injury responses that resemble BPD in humans. We hypothesized that chorioamnionitis would induce maturation of immature monocytes in the fetal lung. Groups of three to seven time-mated ewes received saline or 10 mg of endotoxin (Escherichia coli 055:B5) in saline by intra-amniotic injection for intervals from 1 to 14 days before operative delivery at 124 days of gestational age. Monocytic cells from lung tissue were recovered using Percoll gradients. Monocytic cells consistent with macrophages were identified morphologically and by myosin heavy chain class II expression. An increase in macrophages was preceded by induction of granulocyte-macrophage colony-stimulating factor in the lung and subsequent activation of the transcription factor PU.1. The production of IL-6 by monocytes/macrophages in response to endotoxin challenge in vitro increased 7 and 14 days after exposure to intra-amniotic endotoxin. Recombinant TNF-alpha induced IL-6 production by lung monocytic cells exposed to intra-amniotic endotoxin but not in control cells. Monocytic phagocytosis of apoptotic neutrophils also increased 7 and 14 days after exposure to intra-amniotic endotoxin. Intra-amniotic endotoxin induced lung monocytes to develop into functionally mature cells consistent with macrophages. These findings have implications for lung immune responses after exposure to chorioamnionitis.
Original languageEnglish
Pages (from-to)L345 - L353
Number of pages9
JournalAmerican Journal of Physiology - Lung Cellular and Molecular Physiology
Volume293
Issue number2
DOIs
Publication statusPublished - 2007
Externally publishedYes

Cite this