Endothelium-dependent hyperpolarization: a role in the control of vascular tone

Christopher J. Garland, Frances Plane, Barbara K. Kemp, Thomas M. Cocks

Research output: Contribution to journalReview ArticleResearchpeer-review

435 Citations (Scopus)

Abstract

Endothelial-dependent relaxation of vascular smooth muscle cells evoked by a number of agonists, including cholinomimetics and substance P, is often accompanied by an increase (repolarization and/or hyperpolarization) in the membrane potential. This change in membrane potential appears predominately to reflect the action of an endothelial-derived hyperpolarizing factor (EDHF), which is distinct from NO (or endothelial-derived relaxing factor), and is discussed in this article by Chris Garland and colleagues. In large conducting arteries, EDHF may provide a secondary system to NO, which assumes primary importance in some disease states such as pulmonary hypertension and atherosclerosis. However, in small resistance arteries (100-300 μm), EDHF appears to be a major determinant of vascular calibre under normal conditions, and may therefore be of primary importance in the regulation of vascular resistance.

Original languageEnglish
Pages (from-to)23-30
Number of pages8
JournalTrends in Pharmacological Sciences
Volume16
Issue number1
DOIs
Publication statusPublished - 1995
Externally publishedYes

Cite this