Endothelial cell mineralocorticoid receptors regulate deoxycorticosterone/salt-mediated cardiac remodeling and vascular reactivity but not blood pressure

Amanda Rickard, James Morgan, Sophcoles Chrissobolis, Alyson Anne Miller, Christopher G Sobey, Morag J Young

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Recent studies have identified novel pathological roles for mineralocorticoid receptors (MR) in specific cell types in cardiovascular disease. The mechanisms by which MR promotes inflammation and fibrosis involve multiple cell-specific events. To identify the role of MR in endothelial cells (EC-MR), the current study explored the vascular responses to aldosterone in wild-type (WT) and EC-null mice (EC-MRKO). Nitric oxide function was impaired in the thoracic aorta and mesenteric arteries of aldosterone-treated WT mice. Although endothelial nitric oxide function was equivalently impaired in the mesenteric arteries of aldosterone-treated EC-MRKO mice, endothelial function was unaffected in the aorta, suggesting a differential role for EC-MR depending on the vascular bed. Second, the contribution of EC-MR to cardiovascular inflammation, fibrosis, and hypertension was determined in WT and EC-MRKO treated with deoxycorticosterone/salt for 8 days or 8 weeks. At 8 days, loss of EC-MR prevented macrophage infiltration and the expression of proinflammatory genes in the myocardium. Increased cardiac fibrosis was not detected in either genotype at this time, mRNA levels of profibrotic genes were significantly lower in EC-MRKO mice versus WT. At 8 weeks, deoxycorticosterone/salt treatment increased macrophage recruitment and proinflammatory gene expression in WT but not in EC-MRKO. Collagen deposition and connective tissue growth factor expression were significantly reduced in EC-MRKO versus WT. Interestingly, systolic blood pressure was equivalently elevated in deoxycorticosterone/salt treated WT and EC-MRKO. Our data demonstrate that (1) EC-MR signaling contributes to vascular nitric oxide function in large conduit arteries but not in resistance vessels and (2) an independent role for EC-MR in the inflammatory and profibrotic response to deoxycorticosterone/salt.
Original languageEnglish
Pages (from-to)1033 - 1040
Number of pages8
JournalHypertension
Volume63
Issue number5
DOIs
Publication statusPublished - 2014

Cite this

@article{6299da371cd94471b72634d1b55db7ae,
title = "Endothelial cell mineralocorticoid receptors regulate deoxycorticosterone/salt-mediated cardiac remodeling and vascular reactivity but not blood pressure",
abstract = "Recent studies have identified novel pathological roles for mineralocorticoid receptors (MR) in specific cell types in cardiovascular disease. The mechanisms by which MR promotes inflammation and fibrosis involve multiple cell-specific events. To identify the role of MR in endothelial cells (EC-MR), the current study explored the vascular responses to aldosterone in wild-type (WT) and EC-null mice (EC-MRKO). Nitric oxide function was impaired in the thoracic aorta and mesenteric arteries of aldosterone-treated WT mice. Although endothelial nitric oxide function was equivalently impaired in the mesenteric arteries of aldosterone-treated EC-MRKO mice, endothelial function was unaffected in the aorta, suggesting a differential role for EC-MR depending on the vascular bed. Second, the contribution of EC-MR to cardiovascular inflammation, fibrosis, and hypertension was determined in WT and EC-MRKO treated with deoxycorticosterone/salt for 8 days or 8 weeks. At 8 days, loss of EC-MR prevented macrophage infiltration and the expression of proinflammatory genes in the myocardium. Increased cardiac fibrosis was not detected in either genotype at this time, mRNA levels of profibrotic genes were significantly lower in EC-MRKO mice versus WT. At 8 weeks, deoxycorticosterone/salt treatment increased macrophage recruitment and proinflammatory gene expression in WT but not in EC-MRKO. Collagen deposition and connective tissue growth factor expression were significantly reduced in EC-MRKO versus WT. Interestingly, systolic blood pressure was equivalently elevated in deoxycorticosterone/salt treated WT and EC-MRKO. Our data demonstrate that (1) EC-MR signaling contributes to vascular nitric oxide function in large conduit arteries but not in resistance vessels and (2) an independent role for EC-MR in the inflammatory and profibrotic response to deoxycorticosterone/salt.",
author = "Amanda Rickard and James Morgan and Sophcoles Chrissobolis and Miller, {Alyson Anne} and Sobey, {Christopher G} and Young, {Morag J}",
year = "2014",
doi = "10.1161/HYPERTENSIONAHA.113.01803",
language = "English",
volume = "63",
pages = "1033 -- 1040",
journal = "Hypertension",
issn = "0194-911X",
publisher = "American Heart Association",
number = "5",

}

Endothelial cell mineralocorticoid receptors regulate deoxycorticosterone/salt-mediated cardiac remodeling and vascular reactivity but not blood pressure. / Rickard, Amanda; Morgan, James; Chrissobolis, Sophcoles; Miller, Alyson Anne; Sobey, Christopher G; Young, Morag J.

In: Hypertension, Vol. 63, No. 5, 2014, p. 1033 - 1040.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Endothelial cell mineralocorticoid receptors regulate deoxycorticosterone/salt-mediated cardiac remodeling and vascular reactivity but not blood pressure

AU - Rickard, Amanda

AU - Morgan, James

AU - Chrissobolis, Sophcoles

AU - Miller, Alyson Anne

AU - Sobey, Christopher G

AU - Young, Morag J

PY - 2014

Y1 - 2014

N2 - Recent studies have identified novel pathological roles for mineralocorticoid receptors (MR) in specific cell types in cardiovascular disease. The mechanisms by which MR promotes inflammation and fibrosis involve multiple cell-specific events. To identify the role of MR in endothelial cells (EC-MR), the current study explored the vascular responses to aldosterone in wild-type (WT) and EC-null mice (EC-MRKO). Nitric oxide function was impaired in the thoracic aorta and mesenteric arteries of aldosterone-treated WT mice. Although endothelial nitric oxide function was equivalently impaired in the mesenteric arteries of aldosterone-treated EC-MRKO mice, endothelial function was unaffected in the aorta, suggesting a differential role for EC-MR depending on the vascular bed. Second, the contribution of EC-MR to cardiovascular inflammation, fibrosis, and hypertension was determined in WT and EC-MRKO treated with deoxycorticosterone/salt for 8 days or 8 weeks. At 8 days, loss of EC-MR prevented macrophage infiltration and the expression of proinflammatory genes in the myocardium. Increased cardiac fibrosis was not detected in either genotype at this time, mRNA levels of profibrotic genes were significantly lower in EC-MRKO mice versus WT. At 8 weeks, deoxycorticosterone/salt treatment increased macrophage recruitment and proinflammatory gene expression in WT but not in EC-MRKO. Collagen deposition and connective tissue growth factor expression were significantly reduced in EC-MRKO versus WT. Interestingly, systolic blood pressure was equivalently elevated in deoxycorticosterone/salt treated WT and EC-MRKO. Our data demonstrate that (1) EC-MR signaling contributes to vascular nitric oxide function in large conduit arteries but not in resistance vessels and (2) an independent role for EC-MR in the inflammatory and profibrotic response to deoxycorticosterone/salt.

AB - Recent studies have identified novel pathological roles for mineralocorticoid receptors (MR) in specific cell types in cardiovascular disease. The mechanisms by which MR promotes inflammation and fibrosis involve multiple cell-specific events. To identify the role of MR in endothelial cells (EC-MR), the current study explored the vascular responses to aldosterone in wild-type (WT) and EC-null mice (EC-MRKO). Nitric oxide function was impaired in the thoracic aorta and mesenteric arteries of aldosterone-treated WT mice. Although endothelial nitric oxide function was equivalently impaired in the mesenteric arteries of aldosterone-treated EC-MRKO mice, endothelial function was unaffected in the aorta, suggesting a differential role for EC-MR depending on the vascular bed. Second, the contribution of EC-MR to cardiovascular inflammation, fibrosis, and hypertension was determined in WT and EC-MRKO treated with deoxycorticosterone/salt for 8 days or 8 weeks. At 8 days, loss of EC-MR prevented macrophage infiltration and the expression of proinflammatory genes in the myocardium. Increased cardiac fibrosis was not detected in either genotype at this time, mRNA levels of profibrotic genes were significantly lower in EC-MRKO mice versus WT. At 8 weeks, deoxycorticosterone/salt treatment increased macrophage recruitment and proinflammatory gene expression in WT but not in EC-MRKO. Collagen deposition and connective tissue growth factor expression were significantly reduced in EC-MRKO versus WT. Interestingly, systolic blood pressure was equivalently elevated in deoxycorticosterone/salt treated WT and EC-MRKO. Our data demonstrate that (1) EC-MR signaling contributes to vascular nitric oxide function in large conduit arteries but not in resistance vessels and (2) an independent role for EC-MR in the inflammatory and profibrotic response to deoxycorticosterone/salt.

UR - http://hyper.ahajournals.org/content/63/5/1033.full.pdf

U2 - 10.1161/HYPERTENSIONAHA.113.01803

DO - 10.1161/HYPERTENSIONAHA.113.01803

M3 - Article

VL - 63

SP - 1033

EP - 1040

JO - Hypertension

JF - Hypertension

SN - 0194-911X

IS - 5

ER -