TY - JOUR
T1 - End-Capping Strategies for Triggering End-to-End Depolymerization of Polyglyoxylates
AU - Fan, Bo
AU - Trant, John F.
AU - Gillies, Elizabeth R.
PY - 2016/12/27
Y1 - 2016/12/27
N2 - Polymers that undergo end-to-end depolymerization in response to the cleavage of a stimuli-responsive end-cap are promising for diverse applications from drug delivery to responsive coatings and plastics. It is critical that the end-cap is designed to respond to an appropriate stimulus for the application. In the current work, end-caps for triggering the depolymerization of poly(ethyl glyoxylate) (PEtG) were explored. First, a phenylboronate, a disulfide, and an azobenzene were utilized to impart redox-responsive properties to PEtG. Then, methoxy-substituted trityl groups were used to provide sensitivity to mild acid. A multiresponsive platform was also introduced, allowing PEtG to respond to multiple stimuli, either simultaneously or independently. Incorporation of a cross-linkable trialkene end-cap enabled the preparation of networks that could subsequently be depolymerized. Finally, high molar mass PEtG could be depolymerized by mechanical stimulation independent of the end-cap. It is anticipated that the versatility in end-capping strategies and potential depolymerization stimuli will not only expand PEtG’s utility for different applications but also be useful for other classes of end-to-end depolymerizable polymers.
AB - Polymers that undergo end-to-end depolymerization in response to the cleavage of a stimuli-responsive end-cap are promising for diverse applications from drug delivery to responsive coatings and plastics. It is critical that the end-cap is designed to respond to an appropriate stimulus for the application. In the current work, end-caps for triggering the depolymerization of poly(ethyl glyoxylate) (PEtG) were explored. First, a phenylboronate, a disulfide, and an azobenzene were utilized to impart redox-responsive properties to PEtG. Then, methoxy-substituted trityl groups were used to provide sensitivity to mild acid. A multiresponsive platform was also introduced, allowing PEtG to respond to multiple stimuli, either simultaneously or independently. Incorporation of a cross-linkable trialkene end-cap enabled the preparation of networks that could subsequently be depolymerized. Finally, high molar mass PEtG could be depolymerized by mechanical stimulation independent of the end-cap. It is anticipated that the versatility in end-capping strategies and potential depolymerization stimuli will not only expand PEtG’s utility for different applications but also be useful for other classes of end-to-end depolymerizable polymers.
UR - http://www.scopus.com/inward/record.url?scp=85008496886&partnerID=8YFLogxK
U2 - 10.1021/acs.macromol.6b02320
DO - 10.1021/acs.macromol.6b02320
M3 - Article
AN - SCOPUS:85008496886
SN - 0024-9297
VL - 49
SP - 9309
EP - 9319
JO - Macromolecules
JF - Macromolecules
IS - 24
ER -