Encapsulation of Hydrophobic Apigenin into Small Unilamellar Liposomes Coated with Chitosan Through Ethanol Injection and Spray Drying

Research output: Contribution to journalArticleResearchpeer-review

8 Citations (Scopus)

Abstract

Despite the multiple health benefits, natural flavonoid apigenin has poor aqueous solubility that restricts its delivery in foods. This study investigated the potential of spray-dried chitosan-coated liposomes prepared from scalable methods for the food industry as the delivery carriers for apigenin. Apigenin-loaded small unilamellar liposomes produced from ethanol injection had an encapsulation efficiency of 74.88 ± 5.31%. They were electrostatically stabilised via chitosan coating (0.25% w/v) and spray-dried. Spray-dried chitosan-coated apigenin liposomes (SCAL) exhibited the following powder characteristics: yield 66.62 ± 3.08%, moisture content 4.33 ± 0.56%, water activity 0.2242 ± 0.0548, particle size 10.97 ± 1.55 μm, nearly spherical morphology with wrinkles and dents under microscopic observation. Compared with the unencapsulated apigenin, SCAL demonstrated improved aqueous solubility (10.22 ± 0.18 mg/L), higher antioxidant capacity, and stability against simulated gastrointestinal digestion. The chitosan coating gave a slower in-vitro release of apigenin in SCAL (77.0 ± 6.2%) than that of uncoated apigenin liposomes (94.0 ± 5.3%) at 12 h. The apigenin release kinetics from SCAL could be represented by the Korsmeyer-Peppas model (R2 = 0.971). These findings suggest that SCAL could be a promising delivery system of apigenin for functional food applications.

Original languageEnglish
Pages (from-to)424–439
Number of pages16
JournalFood and Bioprocess Technology
Volume17
Issue number2
DOIs
Publication statusPublished - Feb 2024

Keywords

  • Apigenin
  • Chitosan
  • Encapsulation
  • Liposomes
  • Spray drying

Cite this