Else-Net: Elastic Semantic Network for continual action recognition from skeleton data

Tianjiao Li, Qiuhong Ke, Hossein Rahmani, Rui En Ho, Henghui Ding, Jun Liu

Research output: Chapter in Book/Report/Conference proceedingConference PaperResearchpeer-review

30 Citations (Scopus)

Abstract

Most of the state-of-the-art action recognition methods focus on offline learning, where the samples of all types of actions need to be provided at once. Here, we address continual learning of action recognition, where various types of new actions are continuously learned over time. This task is quite challenging, owing to the catastrophic forgetting problem stemming from the discrepancies between the previously learned actions and current new actions to be learned. Therefore, we propose Else-Net, a novel Elastic Semantic Network with multiple learning blocks to learn diversified human actions over time. Specifically, our Else-Net is able to automatically search and update the most relevant learning blocks w.r.t. the current new action, or explore new blocks to store new knowledge, preserving the unmatched ones to retain the knowledge of previously learned actions and alleviates forgetting when learning new actions. Moreover, even though different human actions may vary to a large extent as a whole, their local body parts can still share many homogeneous features. Inspired by this, our proposed Else-Net mines the shared knowledge of the decomposed human body parts from different actions, which benefits continual learning of actions. Experiments show that the proposed approach enables effective continual action recognition and achieves promising performance on two large-scale action recognition datasets.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
EditorsDima Damen, Tal Hassner, Chris Pal, Yoichi Sato
Place of PublicationPiscataway NJ USA
PublisherIEEE, Institute of Electrical and Electronics Engineers
Pages13414-13423
Number of pages10
ISBN (Electronic)9781665428125
ISBN (Print)9781665428132
DOIs
Publication statusPublished - 2021
Externally publishedYes
EventIEEE International Conference on Computer Vision 2021 - Online, United States of America
Duration: 11 Oct 202117 Oct 2021
https://iccv2021.thecvf.com/home (Website)
https://ieeexplore.ieee.org/xpl/conhome/9709627/proceeding (Proceedings)

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Publisher IEEE, Institute of Electrical and Electronics Engineers
ISSN (Print)1550-5499
ISSN (Electronic)2380-7504

Conference

ConferenceIEEE International Conference on Computer Vision 2021
Abbreviated titleICCV 2021
Country/TerritoryUnited States of America
CityOnline
Period11/10/2117/10/21
Internet address

Cite this