Electrostatic-charge- and electric-field-induced smart gating for water transportation

Kai Xiao, Yahong Zhou, Xiang-Yu Kong, Ganhua Xie, Pei Li, Zhen Zhang, Liping Wen, Lei Jiang

Research output: Contribution to journalArticleResearchpeer-review

30 Citations (Scopus)

Abstract

Regulating and controlling the transport of water across nanochannels is of great importance in both fundamental research and practical applications because it is difficult to externally control water flow through nanochannels as in biological channels. To date, only a few hydrophobic nanochannels controlling the transport of water have been reported, all of which use exotic hydrophobic molecules. However, the effect of electrostatic charges, which plays an indispensable role in membrane proteins and dominates the energetics of water permeation across aquaporins, has not gained enough attention to control water transport through a solid-state nanochannel/nanopore. Here, we report electrostatic-charge-induced water gating of a single ion track-etched sub-10 nm channel. This system can directly realize the gating transition between an open, conductive state and a closed, nonconductive state by regulating the surface charge density through a process that involves alternating capillary evaporation and capillary condensation. Compared to the introduction of exotic hydrophobic molecules, water gating controlled by electrostatic charges is simple, convenient, and effective. Such a system anticipates potential applications including desalination, controllable valves, and drug delivery systems.
Original languageEnglish
Pages (from-to)9703-9709
Number of pages7
JournalACS Nano
Volume10
Issue number10
DOIs
Publication statusPublished - 25 Oct 2016
Externally publishedYes

Keywords

  • Nanochannel
  • Nanopore
  • Gating
  • Water transportation
  • Ion transportation

Cite this