TY - JOUR
T1 - Electronic skin wearable sensors for detecting lumbar–pelvic movements
AU - Zhang, Yuxin
AU - Haghighi, Pari Delir
AU - Burstein, Frada
AU - Yap, Lim Wei
AU - Cheng, Wenlong
AU - Yao, Lina
AU - Cicuttini, Flavia
PY - 2020/3/9
Y1 - 2020/3/9
N2 - Background: A nanomaterial-based electronic-skin (E-Skin) wearable sensor has been successfully used for detecting and measuring body movements such as finger movement and foot pressure. The ultrathin and highly sensitive characteristics of E-Skin sensor make it a suitable alternative for continuously out-of-hospital lumbar–pelvic movement (LPM) monitoring. Monitoring these movements can help medical experts better understand individuals’ low back pain experience. However, there is a lack of prior studies in this research area. Therefore, this paper explores the potential of E-Skin sensors to detect and measure the anatomical angles of lumbar–pelvic movements by building a linear relationship model to compare its performance to clinically validated inertial measurement unit (IMU)-based sensing system (ViMove). Methods: The paper first presents a review and classification of existing wireless sensing technologies for monitoring of body movements, and then it describes a series of experiments performed with E-Skin sensors for detecting five standard LPMs including flexion, extension, pelvic tilt, lateral flexion, and rotation, and measure their anatomical angles. The outputs of both E-Skin and ViMove sensors were recorded during each experiment and further analysed to build the comparative models to evaluate the performance of detecting and measuring LPMs. Results: E-Skin sensor outputs showed a persistently repeating pattern for each movement. Due to the ability to sense minor skin deformation by E-skin sensor, its reaction time in detecting lumbar–pelvic movement is quicker than ViMove by ~1 s. Conclusions: E-Skin sensors offer new capabilities for detecting and measuring lumbar–pelvic movements. They have lower cost compared to commercially available IMU-based systems and their non-invasive highly stretchable characteristic makes them more comfortable for long-term use. These features make them a suitable sensing technology for developing continuous, out-of-hospital real-time monitoring and management systems for individuals with low back pain.
AB - Background: A nanomaterial-based electronic-skin (E-Skin) wearable sensor has been successfully used for detecting and measuring body movements such as finger movement and foot pressure. The ultrathin and highly sensitive characteristics of E-Skin sensor make it a suitable alternative for continuously out-of-hospital lumbar–pelvic movement (LPM) monitoring. Monitoring these movements can help medical experts better understand individuals’ low back pain experience. However, there is a lack of prior studies in this research area. Therefore, this paper explores the potential of E-Skin sensors to detect and measure the anatomical angles of lumbar–pelvic movements by building a linear relationship model to compare its performance to clinically validated inertial measurement unit (IMU)-based sensing system (ViMove). Methods: The paper first presents a review and classification of existing wireless sensing technologies for monitoring of body movements, and then it describes a series of experiments performed with E-Skin sensors for detecting five standard LPMs including flexion, extension, pelvic tilt, lateral flexion, and rotation, and measure their anatomical angles. The outputs of both E-Skin and ViMove sensors were recorded during each experiment and further analysed to build the comparative models to evaluate the performance of detecting and measuring LPMs. Results: E-Skin sensor outputs showed a persistently repeating pattern for each movement. Due to the ability to sense minor skin deformation by E-skin sensor, its reaction time in detecting lumbar–pelvic movement is quicker than ViMove by ~1 s. Conclusions: E-Skin sensors offer new capabilities for detecting and measuring lumbar–pelvic movements. They have lower cost compared to commercially available IMU-based systems and their non-invasive highly stretchable characteristic makes them more comfortable for long-term use. These features make them a suitable sensing technology for developing continuous, out-of-hospital real-time monitoring and management systems for individuals with low back pain.
KW - E-Skin sensors
KW - Monitoring
KW - Movement detection
KW - Wireless sensing technology
UR - http://www.scopus.com/inward/record.url?scp=85081576775&partnerID=8YFLogxK
U2 - 10.3390/s20051510
DO - 10.3390/s20051510
M3 - Article
C2 - 32182928
AN - SCOPUS:85081576775
SN - 1424-8220
VL - 20
SP - 1
JO - Sensors
JF - Sensors
IS - 5
M1 - 1510
ER -