Abstract
The effects of bilateral lesions of the medial preoptic nucleus in association with testosterone on the metabolic activity in discrete brain regions was studied quantitatively by the in vivo autoradiographic 2-deoxyglucose method. Adult male quail were castrated and then left without hormone replacement therapy or treated with testosterone or treated with testosterone and submitted to a bilateral lesion of the medial preoptic nucleus, a brain region that plays a key role in the activation of male copulatory behavior by testosterone. Treatment for about 10 days with testosterone activated the expression of the full range of male sexual behaviors and these behaviors were completely suppressed by the medial preoptic nucleus lesions. Mapping of 2-deoxyglucose uptake revealed both increases and decreases of metabolic activity in discrete brain regions associated with the systemic treatment with testosterone as well as with the lesion of the medial preoptic nucleus. Testosterone affected the oxidative metabolism in brain areas that are known to contain sex steroid receptors (such as the nucleus taeniae and the paraventricular and ventromedial nuclei of the hypothalamus) but also in nuclei that are believed to be devoid of such receptors. Effects of testosterone in these nuclei may be indirect or reflect changes in terminals of axons originating in steroid-sensitive areas. Bilateral medial preoptic nucleus lesions affected 2-deoxyglucose uptake in a variety of brain regions. Some of these regions are known to be mono-synaptically connected to the medial preoptic nucleus. Metabolic depression in these areas may reflect retrograde changes in the neurons projecting to the damaged field.The metabolic changes identified in the present study confirm the prominent role of the preoptic area in the control of sexual behavior, show that changes in the physiology of the visual system represent one of the ways through which testosterone influences the occurrence of this behavior and demonstrate that the medial preoptic nucleus has marked effects on the metabolic activity in a variety of limbic and telencephalic structures. This study also indicates that the medial preoptic nucleus affects the activity of the area ventralis of Tsai, a dopaminergic area known to send projections to a variety of hypothalamic, thalamic and mesencephalic nuclei that are implicated in the control of male sexual behavior. These data therefore support the notion that the control of the dopaminergic activity in the area ventralis of Tsai by the medial preoptic nucleus represents one of the ways through which the medial preoptic area regulates male reproductive behavior.
Original language | English |
---|---|
Pages (from-to) | 447 - 466 |
Number of pages | 20 |
Journal | Neuroscience |
Volume | 108 |
Issue number | 3 |
Publication status | Published - 2001 |
Externally published | Yes |