Effects of gape and tooth position on bite force and skull stress in the dingo (Canis lupus dingo) using a 3-dimensional finite element approach

Jason Bourke, Stephen Wroe, Karen Moreno, Colin McHenry, Philip Clausen

Research output: Contribution to journalArticleResearchpeer-review

54 Citations (Scopus)

Abstract

Models of the mammalian jaw have predicted that bite force is intimately linked to jaw gape and to tooth position. Despite widespread use, few empirical studies have provided evidence to validate these models in non-human mammals and none have considered the influence of gape angle on the distribution of stress. Here using a multi-property finite element (FE) model of Canis lupus dingo, we examined the influence of gape angle and bite point on both bite force and cranial stress. Bite force data in relation to jaw gape and along the tooth row, are in broad agreement with previously reported results. However stress data showed that the skull of C. l. dingo is mechanically suited to withstand stresses at wide gapes; a result that agreed well with previously held views regarding carnivoran evolution. Stress data, combined with bite force information, suggested that there is an optimal bite angle of between 25 degrees and 35 degrees in C. l. dingo. The function of these rather small bite angles remains unclear.
Original languageEnglish
Pages (from-to)e2200-1 - e2200-5
Number of pages5
JournalPLoS ONE
Volume3
Issue number5
DOIs
Publication statusPublished - 2008
Externally publishedYes

Cite this