TY - JOUR
T1 - Effects of electrodeposition synthesis parameters on the photoactivity of nanostructured tungsten trioxide thin films
T2 - optimisation study using response surface methodology
AU - Zhu, Tao
AU - Chong, Meng Nan
AU - Phuan, Yi Wen
AU - Ocon, Joey D.
AU - Chan, Eng Seng
N1 - Funding Information:
The authors are grateful to the financial support provided by the eScience fund (Project No: 03-02-10-SF0121) from Ministry of Science, Technology and Innovation (MOSTI), Malaysia. Similar gratitude also goes to the Advanced Engineering Platform and School of Engineering of Monash University Malaysia.
Publisher Copyright:
© 2015 Taiwan Institute of Chemical Engineers.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2016/4/1
Y1 - 2016/4/1
N2 - The main aim of this study was to synthesize and characterise nanostructured tungsten trioxide (WO3) thin films via electrodeposition and subsequently, optimise the electrodeposition synthesis parameters using response surface methodology (RSM). Statistical Box-Behnken RSM design was used to investigate and optimise the effects of four independent electrodeposition synthesis parameters, namely: deposition time, precursor tungsten (W) concentration, annealing temperature and pH. In addition, the synergistic interaction between different electrodeposition synthesis parameters was identified and quantified in enabling a higher photoactivity achievable by nanostructured WO3 thin films. Resultant nanostructured WO3 thin films were characterised using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and photocurrent density measurements under one-Sun irradiation. From the electrodeposition synthesis process, it was found that there was a gradual increase in the nanocrystallites WO3 size from 30 nm to 70 nm when the annealing temperature was varied between 400 °C and 600 °C. XRD results verified the existence of the same photoactive phase of monoclinic WO3 with increasing annealing temperature with the preferred growth orientation along the (002) planar. Whilst from the Box-Behnken RSM design, it was found that the optimum deposition time, precursor W concentration, annealing temperature and pH were: 60 min, 0.15 mol/L, 600 °C, and pH 1.0, respectively. The highest photocurrent density of 120 μA/cm2 was measured at 1 V (versus Ag/AgCl) for nanostructured WO3 thin film synthesized at the optimum conditions as informed by the Box-Behnken RSM. Further analysis and validation of the Box-Behnken RSM model using analysis of variance (ANOVA) revealed that the RSM-derived statistical predictive model was robust, adequate and representative to correlate the various electrodeposition synthesis parameters to photocurrent density. This study highlights the importance to systematically optimise the electrodeposition synthesis parameters in order to achieve a higher photocurrent density on nanostructured WO3 thin film for sustainable hydrogen production from photoelectrochemical water splitting reaction.
AB - The main aim of this study was to synthesize and characterise nanostructured tungsten trioxide (WO3) thin films via electrodeposition and subsequently, optimise the electrodeposition synthesis parameters using response surface methodology (RSM). Statistical Box-Behnken RSM design was used to investigate and optimise the effects of four independent electrodeposition synthesis parameters, namely: deposition time, precursor tungsten (W) concentration, annealing temperature and pH. In addition, the synergistic interaction between different electrodeposition synthesis parameters was identified and quantified in enabling a higher photoactivity achievable by nanostructured WO3 thin films. Resultant nanostructured WO3 thin films were characterised using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and photocurrent density measurements under one-Sun irradiation. From the electrodeposition synthesis process, it was found that there was a gradual increase in the nanocrystallites WO3 size from 30 nm to 70 nm when the annealing temperature was varied between 400 °C and 600 °C. XRD results verified the existence of the same photoactive phase of monoclinic WO3 with increasing annealing temperature with the preferred growth orientation along the (002) planar. Whilst from the Box-Behnken RSM design, it was found that the optimum deposition time, precursor W concentration, annealing temperature and pH were: 60 min, 0.15 mol/L, 600 °C, and pH 1.0, respectively. The highest photocurrent density of 120 μA/cm2 was measured at 1 V (versus Ag/AgCl) for nanostructured WO3 thin film synthesized at the optimum conditions as informed by the Box-Behnken RSM. Further analysis and validation of the Box-Behnken RSM model using analysis of variance (ANOVA) revealed that the RSM-derived statistical predictive model was robust, adequate and representative to correlate the various electrodeposition synthesis parameters to photocurrent density. This study highlights the importance to systematically optimise the electrodeposition synthesis parameters in order to achieve a higher photocurrent density on nanostructured WO3 thin film for sustainable hydrogen production from photoelectrochemical water splitting reaction.
KW - Box-Behnken
KW - Electrodeposition
KW - Photoelectrocatalysis
KW - Photoelectrochemical water splitting
KW - Response surface methodology
KW - Tungsten trioxide
UR - http://www.scopus.com/inward/record.url?scp=84953431637&partnerID=8YFLogxK
U2 - 10.1016/j.jtice.2015.12.010
DO - 10.1016/j.jtice.2015.12.010
M3 - Article
AN - SCOPUS:84953431637
SN - 1876-1070
VL - 61
SP - 196
EP - 204
JO - Journal of the Taiwan Institute of Chemical Engineers
JF - Journal of the Taiwan Institute of Chemical Engineers
ER -