Effect of the Microstructure of the Functional Layers on the Efficiency of Perovskite Solar Cells

Fuzhi Huang, Alexander R. Pascoe, Wu-Qiang Wu, Zhiliang Ku, Yong Peng, Jie Zhong, Rachel A. Caruso, Yi-Bing Cheng

Research output: Contribution to journalArticleResearchpeer-review

75 Citations (Scopus)


The efficiencies of the hybrid organic–inorganic perovskite solar cells have been rapidly approaching the benchmarks held by the leading thin-film photovoltaic technologies. Arguably, one of the most important factors leading to this rapid advancement is the ability to manipulate the microstructure of the perovskite layer and the adjacent functional layers within the device. Here, an analysis of the nucleation and growth models relevant to the formation of perovskite films is provided, along with the effect of the perovskite microstructure (grain sizes and voids) on device performance. In addition, the effect of a compact or mesoporous electron-transport-layer (ETL) microstructure on the perovskite film formation and the optical/photoelectric properties at the ETL/perovskite interface are overviewed. Insight into the formation of the functional layers within a perovskite solar cell is provided, and potential avenues for further development of the perovskite microstructure are identified.

Original languageEnglish
Article number1601715
Number of pages10
JournalAdvanced Materials
Issue number20
Publication statusPublished - 24 May 2017


  • microstructural control
  • nucleation and crystal growth
  • organic–inorganic hybrid perovskites
  • perovskite solar cells

Cite this