Effect of endurance exercise training on Ca2+-calmodulin-dependent protein kinase II expression and signalling in skeletal muscle of humans

Adam J. Rose, Christian Frøsig, Bente Kiens, Jørgen F.P. Wojtaszewski, Erik A. Richter

Research output: Contribution to journalArticleResearchpeer-review

65 Citations (Scopus)


Here the hypothesis that skeletal muscle Ca2+-calmodulin- dependent kinase II (CaMKII) expression and signalling would be modified by endurance training was tested. Eight healthy, young men completed 3 weeks of one-legged endurance exercise training with muscle samples taken from both legs before training and 15 h after the last exercise bout. Along with an ∼40% increase in mitochondrial F1-ATP synthase expression, there was an ∼1-fold increase in maximal CaMKII activity and CaMKII kinase isoform expression after training in the active leg only. Autonomous CaMKII activity and CaMKII autophosphorylation were increased to a similar extent. However, there was no change in α-CaMKII anchoring protein expression with training. Nor was there any change in expression or Thr 17 phosphorylation of the CaMKII substrate phospholamban with training. However, another CaMKII substrate, serum response factor (SRF), had an ∼60% higher phosphorylation at Ser103 after training, with no change in SRF expression. There were positive correlations between the increases in CaMKII expression and SRF phosphorylation as well as F1 ATPase expression with training. After training, there was an increase in cyclic-AMP response element binding protein phosphorylation at Ser133, but not expression, in muscle of both legs. Taken together, skeletal muscle CaMKII kinase isoform expression and SRF phosphorylation is higher with endurance-type exercise training, adaptations that are restricted to active muscle. This may contribute to greater Ca2+ mediated regulation during exercise and the altered muscle phenotype with training.

Original languageEnglish
Pages (from-to)785-795
Number of pages11
JournalJournal of Physiology
Issue number2
Publication statusPublished - 1 Sep 2007
Externally publishedYes

Cite this