Effect of central urotensin II on heart rate, blood pressure and brain Fos immunoreactivity in conscious rats

A. M.D. Watson, M. J. McKinley, C. N. May

Research output: Contribution to journalArticleResearchpeer-review

8 Citations (Scopus)

Abstract

Central administration of urotensin II (UII) increases heart rate (HR), cardiac contractility, and plasma levels of epinephrine and glucose. To investigate the mechanisms causing these responses we examined the effects of i.c.v. administration of rat UII (10 μg) on the sympatho-adrenal and pituitary-adrenal axes in conscious rats, and we mapped the brain sites activated by UII by immunohistochemically detecting Fos expression. In six conscious rats i.c.v. UII, but not vehicle, increased HR significantly 60-90 min after treatment and increased plasma glucose at 60 and 90 min, both indicators of increased epinephrine release. Plasma corticosterone levels were significantly elevated 90 min after i.c.v. UII. Conscious rats, given i.c.v. UII (n=12) and killed after 100 or 160 min, showed increased Fos-immunoreactivity (Fos-IR) in the nucleus of the solitary tract and the central nucleus of the amygdala (CeA) at both time points, compared with vehicle (n=11). In UII-treated rats, Fos-IR in the paraventricular nucleus of the hypothalamus (PVN) was significantly elevated at 160 min, but not 100 min, compared with vehicle. There were no increases in Fos-IR in the rostral ventrolateral medulla or the A5 cell group, areas associated with sympathetic outflow to the adrenal gland. In summary, i.c.v. UII increased HR and plasma glucose and corticosterone in conscious rats. UII increased Fos-IR in the CeA and PVN, but over a longer time course in the latter. These findings indicate that UII acts on specific brain nuclei to stimulate the hypothalamo-pituitary-adrenal axis and to stimulate adrenal sympathetic nerve activity.

Original languageEnglish
Pages (from-to)241-249
Number of pages9
JournalNeuroscience
Volume155
Issue number1
DOIs
Publication statusPublished - 31 Jul 2008
Externally publishedYes

Keywords

  • adrenaline
  • brain
  • corticosterone
  • glucose
  • immunohistochemistry
  • rodent

Cite this