Effect estimates can be accurately calculated with data digitally extracted from interrupted time series graphs

Research output: Contribution to journalArticleResearchpeer-review


Interrupted time series (ITS) studies are frequently used to examine the impact of population-level interventions or exposures. Systematic reviews with meta-analyses including ITS designs may inform public health and policy decision-making. Re-analysis of ITS may be required for inclusion in meta-analysis. While publications of ITS rarely provide raw data for re-analysis, graphs are often included, from which time series data can be digitally extracted. However, the accuracy of effect estimates calculated from data digitally extracted from ITS graphs is currently unknown. Forty-three ITS with available datasets and time series graphs were included. Time series data from each graph was extracted by four researchers using digital data extraction software. Data extraction errors were analysed. Segmented linear regression models were fitted to the extracted and provided datasets, from which estimates of immediate level and slope change (and associated statistics) were calculated and compared across the datasets. Although there were some data extraction errors of time points, primarily due to complications in the original graphs, they did not translate into important differences in estimates of interruption effects (and associated statistics). Using digital data extraction to obtain data from ITS graphs should be considered in reviews including ITS. Including these studies in meta-analyses, even with slight inaccuracy, is likely to outweigh the loss of information from non-inclusion.

Original languageEnglish
Pages (from-to)622-638
Number of pages17
JournalResearch Synthesis Methods
Issue number4
Publication statusPublished - Jul 2023


  • digital data extraction
  • interrupted time series
  • meta-analysis
  • public health

Cite this