TY - JOUR
T1 - EEG power spectrum maturation in preterm fetal growth restricted infants
AU - Cohen, Emily
AU - Wong, Flora Y.
AU - Wallace, Euan M.
AU - Mockler, Joanne C.
AU - Odoi, Alexsandria
AU - Hollis, Samantha
AU - Horne, Rosemary S.C.
AU - Yiallourou, Stephanie R.
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Power spectral analysis of the electroencephalogram (EEG) is a non-invasive method to examine infant brain maturation. Preterm fetal growth restricted (p-FGR) neonates display an altered EEG power spectrum compared to appropriate-for-gestational-age (AGA) peers, suggesting delayed brain maturation. Longitudinal studies investigating EEG power spectrum maturation in p-FGR infants are lacking, however. We thus aimed to investigate brain maturation using sleep EEG power spectral analysis in p-FGR infants compared to preterm and term AGA controls (p-AGA and t-AGA, respectively). EEG was recorded during spontaneous sleep in 13 p-FGR, 17 p-AGA and 19 t-AGA infants at 1 and 6 months post-term age. Infant sleep states (active and quiet sleep) were scored using standard criteria. Power spectral analysis of a single-channel EEG (C3-M2/C4-M1) was performed using Fast Fourier Transform. The EEG power spectrum was divided into delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), sigma (12–14 Hz) and beta (14–30 Hz) frequency bands. Relative (%) powers and the spectral edge frequency were calculated. The spectral edge frequency was significantly higher in p-FGR infants compared to p-AGA controls in quiet sleep at 1 month post-term age (p <.01). This was due to significantly reduced %-delta and significantly increased %-theta, %-alpha and %-beta power (p <.01 for all) compared to p-AGA infants. p-FGR infants also showed significantly increased %-beta power compared to t-AGA infants (p <.05). No group differences were observed in active sleep or at 6 months post-term age. In conclusion, p-FGR infants show altered sleep EEG power spectrum maturation compared to AGA peers. However, changes resolved by 6 months post-term age.
AB - Power spectral analysis of the electroencephalogram (EEG) is a non-invasive method to examine infant brain maturation. Preterm fetal growth restricted (p-FGR) neonates display an altered EEG power spectrum compared to appropriate-for-gestational-age (AGA) peers, suggesting delayed brain maturation. Longitudinal studies investigating EEG power spectrum maturation in p-FGR infants are lacking, however. We thus aimed to investigate brain maturation using sleep EEG power spectral analysis in p-FGR infants compared to preterm and term AGA controls (p-AGA and t-AGA, respectively). EEG was recorded during spontaneous sleep in 13 p-FGR, 17 p-AGA and 19 t-AGA infants at 1 and 6 months post-term age. Infant sleep states (active and quiet sleep) were scored using standard criteria. Power spectral analysis of a single-channel EEG (C3-M2/C4-M1) was performed using Fast Fourier Transform. The EEG power spectrum was divided into delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), sigma (12–14 Hz) and beta (14–30 Hz) frequency bands. Relative (%) powers and the spectral edge frequency were calculated. The spectral edge frequency was significantly higher in p-FGR infants compared to p-AGA controls in quiet sleep at 1 month post-term age (p <.01). This was due to significantly reduced %-delta and significantly increased %-theta, %-alpha and %-beta power (p <.01 for all) compared to p-AGA infants. p-FGR infants also showed significantly increased %-beta power compared to t-AGA infants (p <.05). No group differences were observed in active sleep or at 6 months post-term age. In conclusion, p-FGR infants show altered sleep EEG power spectrum maturation compared to AGA peers. However, changes resolved by 6 months post-term age.
KW - Electroencephalogram
KW - Fetal growth restriction
KW - Intrauterine growth restriction
KW - Neurodevelopment
KW - Prematurity
KW - Spectral analysis
UR - http://www.scopus.com/inward/record.url?scp=85032435005&partnerID=8YFLogxK
U2 - 10.1016/j.brainres.2017.10.010
DO - 10.1016/j.brainres.2017.10.010
M3 - Article
C2 - 29050860
AN - SCOPUS:85032435005
VL - 1678
SP - 180
EP - 186
JO - Brain Research
JF - Brain Research
SN - 0006-8993
ER -