TY - JOUR
T1 - Dynamic PQ Operating Envelopes for prosumers in distribution networks
AU - Zabihinia Gerdroodbari, Yasin
AU - Khorasany, Mohsen
AU - Razzaghi, Reza
N1 - Funding Information:
This work was supported by the Australian Commonwealth Scientific and Industrial Research Organization (CSIRO) .
Publisher Copyright:
© 2022 Elsevier Ltd
PY - 2022/11/1
Y1 - 2022/11/1
N2 - The increasing integration of distributed energy resources (DERs) has provided the opportunity to deliver clean, and low-cost power for energy consumers. However, without appropriate coordination, injected power by DERs can violate the operational limits of the electricity distribution networks and cause issues such as over-voltage and lines congestion. Recently, the promising concept of Operating Envelopes (OEs) has been introduced to support the efficient integration of DERs without directly controlling their output. Within this context, this paper presents a novel framework in which prosumers are routinely provided with dynamic active and reactive OEs and can manage their assets accordingly. The network operator in each time step, collects customers’ expected export, and considering nodes voltage and lines current limits, calculates the dynamic OEs for each prosumer. Then, an energy management algorithm for prosumers is presented, which enables them to control their PV and battery energy storage system according to their defined PQ region. The performance of the proposed framework is evaluated using various simulation studies to demonstrate its significant effectiveness in solving the over-voltage and over-current problems associated with DERs. Furthermore, the comparison of the proposed framework with the state of the art exhibits its superiority in decreasing DERs power curtailment.
AB - The increasing integration of distributed energy resources (DERs) has provided the opportunity to deliver clean, and low-cost power for energy consumers. However, without appropriate coordination, injected power by DERs can violate the operational limits of the electricity distribution networks and cause issues such as over-voltage and lines congestion. Recently, the promising concept of Operating Envelopes (OEs) has been introduced to support the efficient integration of DERs without directly controlling their output. Within this context, this paper presents a novel framework in which prosumers are routinely provided with dynamic active and reactive OEs and can manage their assets accordingly. The network operator in each time step, collects customers’ expected export, and considering nodes voltage and lines current limits, calculates the dynamic OEs for each prosumer. Then, an energy management algorithm for prosumers is presented, which enables them to control their PV and battery energy storage system according to their defined PQ region. The performance of the proposed framework is evaluated using various simulation studies to demonstrate its significant effectiveness in solving the over-voltage and over-current problems associated with DERs. Furthermore, the comparison of the proposed framework with the state of the art exhibits its superiority in decreasing DERs power curtailment.
KW - Distributed energy resources
KW - Operating envelopes
KW - Over-voltage
KW - Prosumer
KW - Smart grid
UR - http://www.scopus.com/inward/record.url?scp=85135940346&partnerID=8YFLogxK
U2 - 10.1016/j.apenergy.2022.119757
DO - 10.1016/j.apenergy.2022.119757
M3 - Article
AN - SCOPUS:85135940346
SN - 0306-2619
VL - 325
JO - Applied Energy
JF - Applied Energy
M1 - 119757
ER -